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1 Introduction

1.1 Structured Prediction
Many tasks(e.g., sequence labeling, semantic role labeling, parsing, machine translation) in natural lan-
guage processing involve predicting structured outputs. It is crucial to model the correlations between the
structured output. Researchers are increasingly applying deep representation learning to these problems,
but the structured component of these approaches is usually quite simplistic. In many applications, we
could predict each sub-component of the structured output independently given the inputs. However, this
may have substantially lower accuracy than an approach that models the interactions between the structured
outputs. Due to the exponentially-large space of candidate outputs, it is computational challenging to jointly
predict all components of the structured outputs.

1.2 Frameworks for Structured Prediction
There are several approaches for structured prediction: local classifiers, discriminative structure models and
energy-based models.

Local Classifiers: Assume we have the features F (x) = (F1(x), F2(x), . . . , Fn(x)) for a given se-
quence x. These could be a hand-engineered set of feature functions or by the way of a learned deep neural
network, such as BiLSTM [Hochreiter and Schmidhuber, 1997]. For the local classifiers, the outputs are
conditionally independent given the features:

logP (y | x) =
∑
i

logP (yi | Fi(x))

It is natural to use the P (yi | Fi(x)) to predict the tag at the position i. It is done with a trivial operations
that computes the argmax of a vector. According to the above, we could see that the local classifiers are
easy to train and do inference with. However, because of the independence assumptions , the expressive
power of models could be limited. And it is hard to guarantee that the decoded output is a valid sequence,
for example, a valid B-I-O. We can observe that the local classifiers completely ignore the current label
when predicting the next label.

Discriminative Structure Models: In discriminative strucure models, the score function decomposes
additively across parts. Each part is a sub-component of input/output pair. Table 1 shows four different
discriminative structure models, which are widely used before.

• transition-based structured prediction: the joint conditional is modeled as the product of locally nor-
malized probability distribution over all positions. However, during training, the true previous label is
always used. This could cause mismatch between training and test time, which is exposure bias [Ran-
zato et al., 2016].
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modeling learning

transition-based
P (y | x) = ΠtP (yt | x, yt−1) maxΘ

∑
〈xi,yi〉∈D

logPΘ(yi | xi)

locally normalized Previous gold label is used during training.

CRF
The joint distribution P (y | x) is defined by maxΘ

∑
〈xi,yi〉∈D

logPΘ(yi | xi)

neural field; it solves the label bias problem

perceptron
The score function S is usually linear weighted minΘ

∑
〈xi,yi〉∈D

[ maxy(SΘ(xi,y)−
sum of the features, S(x, y) = W>f(x,y) −SΘ(xi,yi))]+

large margin
The score function S is usually linear weighted minΘ

∑
〈xi,yi〉∈D

[ maxy(4(y,yi)+

sum of the features, S(x, y) = W>f(x,y) SΘ(xi,y)− SΘ(xi,yi))]+

Table 1: Comparisons of different discriminative models. D is the set of training pairs, [f ]+ = max(0, f),
and4(y,y′) is a structured cost function that returns a nonnegative value indicating the difference between
y and y′.

• conditional random fields [Lafferty et al., 2001](CRF): Pros: probabilistic interpretation (builds on
graphical models), extends to latent variable models, flexible regularization. It solves the label bias
problem. It has the efficient training and decoding based on dynamic programming for linear-chain
CRF. However, it could be computationally expensive given a large label space. And the inference
could be challenging for a general CRF framework.

• Structured Perceptron [Collins, 2002] describe an algorithm for training discriminative models, for
example CRF. Usually Viterbi algorithm or other algorithms are used rather than an exhausive search
in the exponentially large label space.

• Large Margin Structured Classifiers: learning general functional dependencies between arbitrary in-
put and output spaces is one of the key challenges in computational intelligence. Taskar et al. [2004],
Tsochantaridis et al. [2005] presents structured support vector machine(SSVM) that solves the opti-
mization problem in polynomial time with exponential, number of constraints.

There has been a lot of work on using neural networks to define the potential functions in the discrim-
inative structure models, e.g., neural CRF [Passos et al., 2014], RNN-CRF [Huang et al., 2015, Lample
et al., 2016], CNN-CRF [Collobert et al., 2011] etc. However the potential functions are still limited in size.

Energy-based Models: Energy-based modeling [LeCun et al., 2006] associates a scalar measureE(x,y)
of compatibility to each configuration of input x and output variables y. Belanger and McCallum [2016]
formulated deep energy-based models for structured prediction, which they called structured prediction
energy networks (SPENs). SPENs use arbitrary neural networks to define the scoring function over in-
put/output pairs. Compared with discriminative structure models, it is a deep structure model. For discrimi-
native structure models, the potential functions are still limited in size. The dependence of their expressivity
and scalability on the structured output is limited. SPENs, by contrast, do not place any limits on the size of
the potential functions. The structured prediction energy networks is more flexible framework for structured
prediction.

1.3 The Difficulties of Energy-Based Models
This deep architecture captures dependencies between labels that would lead to intractable graphical mod-
els. This flexibility of the deep energy-based models leads to challenges for learning and inference. For
the discriminative training method, it is expensive for the "cost-augmented" inference step:

max
y

(4(y,y′)− EΘ(x,y))

where 4(y,y′) is a structured cost function that returns a nonnegative value indicating the difference
between y and y′. EΘ is a function parameterized by Θ that uses a functional architecture to compute a
scalar energy for an input/output pair. This step is to find the y with low energy but with high cost.

And for the decoding, it is hard to jointly predict the label sequence for a task with complex structured
components:

min
y
EΘ(x,y)
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It maybe intractable to solve the above two optimization problems.
The original work on SPENs used gradient descent for structured inference [Belanger and McCallum,

2016, Belanger et al., 2017]. However, it is hard to guarantee the convergence for gradient descent inference.
Furthermore, a lot of iterations could be needed for the convergence. Both of these could slow down the
inference step and decrease the performance.

1.4 The New Approach for Training and Inference in Energy-Based Models
Prior work with SPENs used gradient descent for inference, relaxing the structured output to a set of contin-
uous variables and then optimizing the energy with respect to them. We replace this use of gradient descent
with a neural network trained to approximate structured argmax inference. The "inference network" out-
puts continuous values that we treat as the output structure. We develop large-margin training criteria for
joint training of the structured energy function and inference network. According to our experiments re-
sults, we report speed-ups of 10-60x compared to Belanger et al. [2017] while also improving accuracy
on multi-label classification. For sequence labeling with simple structured energies,our approach performs
comparably to exact inference while being much faster at test time.

1.5 The Benefits of Learning Energy-Based Inference network
As stated above, the flexibility of the deep energy-based models leads to challenges for learning and infer-
ence. However, following are the potential benefits of Learning Energy-Based Inference network.

• Modeling complex structured components: for example, sequence labeling tasks usually learn a
linear-chain CRFs that only learn the weight between successive labels and neural machine trans-
lation systems use unstructured training of local factors. For the energy model, it could capture the
arbitrary dependence, especially the long-range dependency. For the generation, we could use for
reducing the repetition, high BLEU score or semantic similarity with different energy terms.

• The energy could be used to improve the inference (even though exact inference maybe intractable,
the approximate inference could be used.). For example, neural machine translation systems use
unstructured training of local factors followed by beam search for test-time inference. However, the
beam search algorithm could not be use if the score could not be decomposed from left to right. For
example, the neural generation system [Li et al., 2016] could rerank the outputs from the n-best list
by linearly combining the forward score p(y | x) and the “reverse score” p(x | y), where the latter
comes from a separately-trained seq2seq model. The score function(energy) is potentially useful for
the generation with the approximate inference network.

1.6 Overview and Contributions
In Section 3, we review previous two standard inference methods: gradient descent for inference and Viterbi
algorithm. In Section 4 we introduce our proposed method, which replace this use of gradient descent with
a neural network trained to approximate structured argmax inference. In Section 5, we demonstrate that
inference networks achieve a better speed/accuracy/search error trade-off than gradient descent, while also
being faster than exact inference at similar accuracy levels. In Section 6 and Section 7, we also develop
large-margin training objectives to jointly train deep energy functions and inference networks. In Sec-
tion 8, inference network is applied for non-autoregressive machine translation model training. We achieve
state-of-the-art non-autoregressive results on the IWSLT 2014 DE-EN and WMT 2016 RO-EN datasets,
approaching the performance of autoregressive models. Section ??, several future research directiona are
proposed.

2 RELATED WORK

2.1 Energy-Based Models
More recently, structured models have been combined with deep nets [Passos et al., 2014, Huang et al.,
2015, Lample et al., 2016, Collobert et al., 2011, Hu et al., 2019, Mostajabi et al., 2018, Hwang et al., 2019,
Graber et al., 2018a,b, Zhang et al., 2019],However the potential functions are still limited. To address the
shortcoming, energy-based models are proposed, for instance, SPENs [Belanger and McCallum, 2016] and
GSPEN [Graber and Schwing, 2019]. They do not allow for the explicit specification of output structure.
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Recently, Grathwohl et al. [2020] also demonstrate that energy based training of the joint distribution
improves calibration, robustness.

Although energy-based models have the strong ability to model the complex structured components, it
have had limited application in NLP due to the computational challenges involved in learning and inference
in extremely large search spaces. Previous, the partition function is needed with effectively estimating and
sampling for training energy-based model [Hinton, 2002, Teh et al., 2003]. In Belanger and McCallum
[2016] and Section 6 and Section 7, we use margin-based methods for energy training, which find the neg-
ative example in the cost-augmented inference step. However, it could be time-consuming and intractable.
In Section 6 and Section 7, we use an inference network to approximate this inference step. In Wang and
Ou [2018], Bakhtin et al. [2020], they use noise-contrastive estimation [Gutmann and Hyvarinen, 2010] for
the energy training with some negative examples. It usually assumes that the model have “self-normalized”
outputs.

2.2 Adversarial Training
Our training methods are reminiscent of other alternating optimization problems like that underlying gener-
ative adversarial networks (GANs; Goodfellow et al. 2014, Salimans et al. 2016, Zhao et al. 2016, Arjovsky
et al. 2017). GANs are based on a minimax game and have a value function that one agent (a discriminator
D) seeks to maximize and another (a generator G) seeks to minimize.

Progress in training GANs has come largely from overcoming learning difficulties by modifying loss
functions and optimization, and GANs have become more successful and popular as a result. Notably,
Wasserstein GANs [Arjovsky et al., 2017] provided the first convergence measure in GAN training using
Wasserstein distance. To compute Wasserstein distance, the discriminator uses weight clipping, which lim-
its network capacity. Weight clipping was subsequently replaced with a gradient norm constraint [Gulrajani
et al., 2017]. Miyato et al. [2018] proposed a novel weight normalization technique called spectral normal-
ization. These methods may be applicable to the similar optimization problems solved in learning SPENs.
By their analysis, a log loss discriminator converges to a degenerate uniform solution. When using hinge
loss, we can get a non-degenerate discriminator while matching the data distribution [Dai et al., 2017, Zhao
et al., 2016]. Our formulation is closer to this hinge loss version of the GAN.

2.3 Approximate Inference
Since we train a single inference network for an entire dataset, our approach is also related to “amortized
inference” [Srikumar et al., 2012, Gershman and Goodman, 2014, Paige and Wood, 2016, Chang et al.,
2015]. Such methods precompute or save solutions to subproblems for faster overall computation. Our
inference networks likely devote more modeling capacity to the most frequent substructures in the data. A
kind of inference network is used in variational autoencoders [Kingma and Welling, 2013] to approximate
posterior inference in generative models.

Our approach is also related to knowledge distillation [Ba and Caruana, 2014, Hinton et al., 2015],
which refers to strategies in which one model (a “student”) is trained to mimic another (a “teacher”). Typi-
cally, the teacher is a larger, more accurate model but which is too computationally expensive to use at test
time. Urban et al. [2016] train shallow networks using image classification data labeled by an ensemble of
deep teacher nets. Geras et al. [2016] train a convolutional network to mimic an LSTM for speech recogni-
tion. Others have explored knowledge distillation for sequence-to-sequence learning [Kim and Rush, 2016]
and parsing [Kuncoro et al., 2016]. It has been empirically observed that distillation can improve gener-
alization, Mobahi et al. [2020] provides a theoretical analysis of distillation when the teacher and student
architectures are identical. In our methods, there is no limitation for model size of “student” and “teacher”.

Our methods are also related to work in structured prediction that seeks to approximate structured mod-
els with factorized ones, e.g., mean-field approximations in graphical models [Koller and Friedman, 2009,
Krähenbühl and Koltun, 2011]. Like our use of inference networks, there have been efforts in designing
differentiable approximations of combinatorial search procedures [Martins and Kreutzer, 2017, Goyal et al.,
2018] and structured losses for training with them [Wiseman and Rush, 2016]. Since we relax discrete out-
put variables to be continuous, there is also a connection to recent work that focuses on structured prediction
with continuous valued output variables [Wang et al., 2016]. They also propose a formulation that yields an
alternating optimization problem, but it is based on proximal methods.

There are other settings in which gradient descent is used for inference, e.g., image generation appli-
cations like DeepDream [Mordvintsev et al., 2015] and neural style transfer [Gatys et al., 2015], as well
as machine translation [Hoang et al., 2017]. In these and related settings, gradient descent has started to
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be replaced by inference networks, especially for image transformation tasks [Johnson et al., 2016, Li and
Wand, 2016]. Our results below provide more evidence for making this transition. An alternative to what
we pursue here would be to obtain an easier convex optimization problem for inference via input convex
neural networks [Amos et al., 2017].

2.4 Non-Autoregressive Machine Translation
Non-autoregressive neural machine translation began with the work of Gu et al. [2018], who found ben-
efit from using knowledge distillation [Hinton et al., 2015], and in particular sequence-level distilled out-
puts [Kim and Rush, 2016]. Subsequent work has narrowed the gap between non-autoregressive and au-
toregressive translation, including multi-iteration refinements [Lee et al., 2018, Ghazvininejad et al., 2019,
Saharia et al., 2020, Kasai et al., 2020] and rescoring with autoregressive models [Kaiser et al., 2018, Wei
et al., 2019, Ma et al., 2019, Sun et al., 2019]. Ghazvininejad et al. [2020] and Saharia et al. [2020] proposed
aligned cross entropy or latent alignment models and achieved the best results of all non-autoregressive
models without refinement or rescoring. We propose training inference networks with autoregressive ener-
gies and outperform the best purely non-autoregressive methods.

Another related approach trains an “actor” network to manipulate the hidden state of an autoregressive
neural MT system [Gu et al., 2017, Chen et al., 2018, Zhou et al., 2020] in order to bias it toward outputs
with better BLEU scores. This work modifies the original pretrained network rather than using it to define
an energy for training an inference network.

3 BACKGROUND
We denote the space of inputs by X . For a given input x ∈ X , we denote the space of legal structured
outputs by Y(x). We denote the entire space of structured outputs by Y = ∪x∈Y(x). Structure prediction
energy network(SPEN) [Belanger and McCallum, 2016] defines an energy function EΘ : X × Y → R
parameterized by Θ that uses a functional architecture to compute a scalar energy for an input/output pair.
The energy function can be an arbitrary function of the entire input/output pair, such as a deep neural
network. Given the energy function, the inference step is to find the output with lowest energy:

ŷ = argmin
y∈Y(x)

EΘ(x,y) (1)

However, solving Eq. (1) requires combinatorial algorithms because Y is a discrete structured space. This
becomes intractable when EΘ does not decompose into a sum over small “parts” of y. Belanger and
McCallum [2016] relax this problem by allowing the discrete vector y to be continuous.

Gradient Descent for Inference. Belanger and McCallum [2016] uses gradient descent for inference.
To use gradient descent (GD) for structured inference, researchers typically relax the output space from
a discrete, combinatorial space to a continuous one and then use gradient descent to solve the following
optimization problem:

argmin
y∈YR(x)

EΘ(x,y)

where YR is the relaxed continuous output space. For sequence labeling, YR(x) consists of length-|x|
sequences of probability distributions over output labels. To obtain a discrete labeling for evaluation, the
most probable label at each position is returned.

We actually perform gradient descent in an even more relaxed output space YR′(x) which consists of
length-|x| sequences of vectors, where each vector yt ∈ RL, L is the label set size. When computing
the energy, we use a softmax transformation on each yt, solving the following optimization problem with
gradient descent:

argmin
y∈YR′ (x)

EΘ(x, softmax(y)) (2)

where the softmax operation above is applied independently to each vector yt in the output structure y.
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Viterbi Algorithm Viterbi algorithm [Viterbi, 1967] is a dynamic programming algorithm for the finding
the most likely sequence. In HMM or CRF, the conditional probability log p(y | x) could be decomposed
in a similar way.

log p(y | x) =

|x|∑
i=1

score1(yi, yi−1) + score2(yi,x)

here score1(yi, yi−1) is a bigram score between the label yi and yi−1, score2(yi,x) is a uniary score at
position i with label yi. Particularly, in HMM, score1(yi, yi−1) = log pη(yi | yi−1), and score2(yi,x) =
log pτ (xi | yi). The inference in HMMs or CRF is done with the following optimization:

Classifier(x) = argmax
y

|x|∑
i=1

score1(yi, yi−1) + score2(yi,x) (3)

The above optimization problem could be solved with the dynamic programming algorithm. We set a
variable V (m, y′), which means the probability of sequence starting with label y′ at the position m. Then
we have:

V (1, ŷ) =score1(ŷ, 〈s〉) + score2(ŷ,x)

V (m, ŷ) =maxy′(score1(ŷ, y′) + score2(ŷ,x) + V (m− 1, y′))

〈s〉 is the start sequence symbol.The second equation could be done recursively. If we consider that the last
symbol is the end symbol 〈/s〉, then the output sequence y|x| is:

argmax
y′

score1(< /s >, y′) + V (|x|, y′)

And y|x|−1, y|x|−2,..., y2, y1 are got recursively. The time complexity isO(nL2), where n is the sequence
length and L is the size of the label space.

4 Inference Networks
Previous work [Belanger and McCallum, 2016] relaxed y from a discrete to a continuous vector and used
gradient descent for inference. We also relax y but we use a different strategy to approximate inference. In
Tu and Gimpel [2018] we define an inference network AΨ(x) parameterized by Ψ and train it with the
goal that

AΨ(x) ≈ argmin
y∈YR(x)

EΘ(x,y) (4)

Given an energy function EΘ and a dataset X of inputs, we solve the following optimization problem:

Ψ̂← argmin
Ψ

∑
x∈X

EΘ(x,AΨ(x)) (5)

The architecture of AΨ will depend on the task. For Multiple Label Classification(MLC), the same set of
labels is applicable to every input, so y has the same length for all inputs. So, we can use a feed-forward
network for AΨ with a vector output, treating each dimension as the prediction for a single label. For
sequence labeling, each x (and therefore each y) can have a different length, so we must use a network
architecture for AΨ that permits different lengths of predictions. We use an RNN that returns a vector at
each position of x. We interpret this vector as a probability distribution over output labels at that position.

We note that the output of AΨ must be compatible with the energy function, which is typically defined
in terms of the original discrete output space Y . This may require generalizing the energy function to be
able to operate both on elements of Y and YR.

5 Benchmarking Approximate Inference Methods
In this section, I will introduce how to apply our method on several tasks and compare with several other
inference method: Viterbi, Gradient descent inference.
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The input space X is now the set of all sequences of symbols drawn from a vocabulary. For an input
sequence x of length N , where there are L possible output labels for each position in x, the output space
Y(x) is [L]N , where the notation [q] represents the set containing the first q positive integers. We define
y = 〈y1, y2, .., yN 〉 where each yi ranges over possible output labels, i.e., yi ∈ [L].

When defining our energy for sequence labeling, we take inspiration from bidirectional LSTMs (BLSTMs;
Hochreiter and Schmidhuber 1997) and conditional random fields (CRFs; Lafferty et al. 2001). A “linear
chain” CRF uses two types of features: one capturing the connection between an output label and x and the
other capturing the dependence between neighboring output labels. We use a BLSTM to compute feature
representations for x. We use f(x, t) ∈ Rd to denote the “input feature vector” for position t, defining it to
be the d-dimensional BLSTM hidden vector at t.

The CRF energy function is the following:

EΘ(x,y) = −

(∑
t

U>ytf(x, t) +
∑
t

Wyt−1,yt

)
(6)

where Ui ∈ Rd is a parameter vector for label i and the parameter matrix W ∈ RL×L contains label pair
parameters. The full set of parameters Θ includes the Ui vectors, W , and the parameters of the BLSTM.
The above energy only permits discrete y. However, the general energy which permits continuous y is
needed. Now, I will discuss the continuous version of the above energy.

For sequence labeling tasks, given an input sequence x = 〈x1, x2, ..., x|x|〉, we wish to output a se-
quence y = 〈y1,y2, ...,y|x|〉 ∈ Y(x). Here Y(x) is the structured output space for x. Each label yt is
represented as an L-dimensional one-hot vector where L is the number of labels.

For the general case that permits relaxing y to be continuous, we treat each yt as a vector. It will be
one-hot for the ground truth y and will be a vector of label probabilities for relaxed y’s. Then the general
energy function is:

EΘ(x,y) = −

(∑
t

L∑
i=1

yt,i
(
U>i f(x, t)

)
+
∑
t

y>t−1Wyt

)
(7)

where yt,i is the ith entry of the vector yt. In the discrete case, this entry is 1 for a single i and 0 for
all others, so this energy reduces to Eq. (6) in that case. In the continuous case, this scalar indicates the
probability of the tth position being labeled with label i.

For the label pair terms in this general energy function, we use a bilinear product between the vectors
yt−1 and yt using parameter matrix W , which also reduces to Eq. (6) when they are one-hot vectors.

5.1 Experimental Setup
We perform experiments on three tasks: Twitter part-of-speech tagging (POS) [Gimpel et al., 2011, Owoputi
et al., 2013] and, named entity recognition (NER) [Tjong Kim Sang and De Meulder, 2003], and CCG
supersense tagging (CCG) [Hockenmaier and Steedman, 2002].

For our experimental comparison, we consider two CRF variants. The first is the basic model described
above, which we refer to as BLSTM-CRF. We refer to the CRF with the following three techniques (word
embedding fine-tuning, character-based embeddings, dropout) as BLSTM-CRF+:

Word Embedding Fine-Tuning. We used pretrained, fixed word embeddings when using the BLSTM-
CRF model, but for the more complex BLSTM-CRF+ model, we fine-tune the pretrained word embeddings
during training.

Character-Based Embeddings. Character-based word embeddings provide consistent improvements in
sequence labeling [Lample et al., 2016, Ma and Hovy, 2016]. In addition to pretrained word embeddings,
we produce a character-based embedding for each word using a character convolutional network like that
of Ma and Hovy [2016]. The filter size is 3 characters and the character embedding dimensionality is 30.
We use max pooling over the character sequence in the word and the resulting embedding is concatenated
with the word embedding before being passed to the BLSTM.

Dropout. We also add dropout during training [Hinton et al., 2012]. Dropout is applied before the char-
acter embeddings are fed into the CNNs, at the final word embedding layer before the input to the BLSTM,
and after the BLSTM. The dropout rate is 0.5 for all experiments.
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Inference Networks
CNN BLSTM seq2seq Viterbi Gradient Descent

POS 12500 1250 357 500 20
NER 10000 1000 294 360 23
CCG 6666 1923 1000 232 16

Table 2: Speed comparison of inference networks across tasks and architectures (examples/sec).

Inference Network Architectures. In our experiments, we use three options for the inference network ar-
chitectures: convolutional neural networks (CNN), recurrent neural networks, sequence-to-sequence (seq2seq,
Sutskever et al. 2014b) models. For seq2seq inference network, since sequence labeling tasks have equal
input and output sequence lengths and a strong connection between corresponding entries in the sequences,
Goyal et al. [2018] used fixed attention that deterministically attends to the ith input when decoding the ith
output, and hence does not learn any attention parameters. For each, we optionally include the modeling
improvements (word embedding fine-tuning, character-based embeddings, dropout) described in the above.
When doing so, we append “+” to the setting’s name to indicate this (e.g., infnet+).

5.2 Training Objective
For training the inference network parameters Ψ, we find that a local cross entropy loss consistently worked
well for sequence labeling. We use this local cross entropy loss in this proposal, so we perform learning by
solving the following:

argmin
Ψ

∑
〈x,y〉

EΘ(x,AΨ(x))+λ`token(y,AΨ(x))

where the sum is over 〈x,y〉 pairs in the training set. The token-level loss is defined:

`token(y,A(x)) =

|y|∑
t=1

CE(yt,A(x)t) (8)

where yt is the L-dimensional one-hot label vector at position t in y, A(x)t is the inference network’s
output distribution at position t, and CE stands for cross entropy. `token is the loss used in our non-
structured baseline models.

5.3 Speed Comparison
Asymptotically, Viterbi takesO(nL2) time, where n is the sequence length. The BLSTM and our deterministic-
attention seq2seq models have time complexity O(nL). CNNs also have complexity O(nL) but are more
easily parallelizable. Table 2 shows test-time inference speeds for inference networks, gradient descent, and
Viterbi for the BLSTM-CRF model. We use GPUs and a minibatch size of 10 for all methods. CNNs are
1-2 orders of magnitude faster than the others. BLSTMs work almost as well as seq2seq models and are
2-4 times faster in our experiments. Viterbi is actually faster than seq2seq when L is small, but for CCG,
which has L = 400, it is 4-5 times slower. Gradient descent is slower than the others because it generally
needs many iterations (20-50) for competitive performance.

5.4 Search Error
We can view inference networks as approximate search algorithms and assess characteristics that affect
search error. To do so, we train two LSTM language models (one on word sequences and one on gold label
sequences) on the Twitter POS data.

We compute the difference in the BLSTM-CRF energies between the inference network output yinf

and the Viterbi output yvit as the search error:

EΘ(x,yinf )− EΘ(x,yvit) (9)

We compute the same search error for gradient descent. For the BLSTM inference network, Spearman’s
ρ between the word sequence perplexity and search error is 0.282; for the label sequence perplexity, it is
0.195. For gradient descent inference, Spearman’s ρ between the word sequence perplexity and search
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Twitter POS Tagging NER CCG Supertagging
N Acc. (↑) Energy (↓) F1 (↑) Energy (↓) Acc. (↑) Energy (↓)

gold standard 100 -159.65 100 -230.63 100 -480.07

BLSTM-CRF+/Viterbi 90.9 -163.20 91.6 -231.53 94.3 -483.09

10 89.2 -161.69 81.9 -227.92 65.1 -412.81
20 90.8 -163.06 89.1 -231.17 74.6 -414.81
30 90.8 -163.02 89.6 -231.30 83.0 -447.64

gradient descent
40 90.7 -163.03 89.8 -231.34 88.6 -471.52
50 90.8 -163.04 89.8 -231.35 90.0 -476.56

100 - - - - 90.1 -476.98
500 - - - - 90.1 -476.99
1000 - - - - 90.1 -476.99

infnet+ 91.3 -162.07 90.8 -231.19 94.2 -481.32
discretized output from infnet+ 91.3 -160.87 90.8 -231.34 94.2 -481.95

3 91.0 -162.59 91.3 -231.32 94.3 -481.91
instance-tailored infnet+ 5 90.9 -162.81 91.2 -231.37 94.3 -482.23

10 91.3 -162.85 91.5 -231.39 94.3 -482.56

infnet+ as warm start for
3 91.4 -163.06 91.4 -231.42 94.4 -482.62

gradient descent
5 91.2 -163.12 91.4 -231.45 94.4 -482.64

10 91.2 -163.15 91.5 -231.46 94.4 -482.78

Table 3: Test set results of approximate inference methods for three tasks, showing performance metrics
(accuracy and F1) as well as average energy of the output of each method. The inference network archi-
tectures in the above experiments are: CNN for POS, seq2seq for NER, and BLSTM for CCG. N is the
number of epochs for GD inference or instance-tailored fine-tuning.

error is 0.122; for the label sequence perplexity, it is 0.064. These positive correlations mean that for
frequent sequences, inference networks and gradient descent exhibit less search error. We also note that
the correlations are higher for the inference network than for gradient descent, showing the impact of
amortization during learning of the inference network parameters. That is, since we are learning to do
inference from a dataset, we would expect search error to be smaller for more frequent sequences, and we
do indeed see this correlation.

5.5 Methods to Improve Inference Networks
To further improve the performance of an inference network for a particular test instance x, we propose two
novel approaches that leverage the strengths of inference networks to provide effective starting points and
then use instance-level fine-tuning in two different ways.

5.5.1 Instance-Tailored Inference Networks

For each test example x, we initialize an instance-specific inference network AΨ(x) using the trained
inference network parameters, then run gradient descent on the following loss:

argmin
Ψ

EΘ(x,AΨ(x)) (10)

This procedure fine-tunes the inference network parameters for a single test example to minimize the energy
of its output. For each test example, the process is repeated, with a new instance-specific inference network
being initialized from the trained inference network parameters.

5.5.2 Warm-Starting Gradient Descent with Inference Networks

Given a test example x, we initialize y ∈ YR′(x) using the inference network and then use gradient descent
by solving Eq. 2 described in Section 3 to update y. However, the inference network output is in YR(x)
while gradient descent works with the more relaxed space YR′(x). So we simply use the logits from the
inference network, which are the score vectors before the softmax operations.
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Figure 1: CCG test results for inference methods (GD = gradient descent). The x-axis is the total inference
time for the test set. The numbers on the GD curve are the number of gradient descent iterations.

5.6 Speed, Accuracy, and Search Error
Table 3 compares inference methods in terms of both accuracy and energies reached during inference. For
each number N of gradient descent iterations in the table, we tune the learning rate per-sentence and report
the average accuracy/F1 with that fixed number of iterations. We also report the average energy reached.
For inference networks, we report energies both for the output directly and when we discretize the output
(i.e., choose the most probable label at each position).

Gradient Descent Across Tasks. The number of gradient descent iterations required for competitive
performance varies by task. For POS, 20 iterations are sufficient to reach accuracy and energy close to
Viterbi. For NER, roughly 40 iterations are needed for gradient descent to reach its highest F1 score, and
for its energy to become very close to that of the Viterbi outputs. However, its F1 score is much lower
than Viterbi. For CCG, gradient descent requires far more iterations, presumably due to the larger number
of labels in the task. Even with 1000 iterations, the accuracy is 4% lower than Viterbi and the inference
networks. Unlike POS and NER, the inference network reaches much lower energies than gradient descent
on CCG, suggesting that the inference network may not suffer from the same challenges of searching high-
dimensional label spaces as those faced by gradient descent.

Inference Networks Across Tasks. For POS, the inference network does not have lower energy than
gradient descent with ≥ 20 iterations, but it does have higher accuracy. This may be due in part to our use
of multi-task learning for inference networks. The discretization of the inference network outputs increases
the energy on average for this task, whereas it decreases the energy for the other two tasks. For NER, the
inference network reaches a similar energy as gradient descent, especially when discretizing the output, but
is considerably better in F1. The CCG tasks shows the largest difference between gradient descent and the
inference network, as the latter is much better in both accuracy and energy.

Instance Tailoring and Warm Starting. Across tasks, instance tailoring and warm starting lead to lower
energies than infnet+. The improvements in energy are sometimes joined by improvements in accuracy,
notably for NER where the gains range from 0.4 to 0.7 in F1. Warm starting gradient descent yields the
lowest energies (other than Viterbi), showing promise for the use of gradient descent as a local search
method starting from inference network output.

Wall Clock Time Comparison. Figure 1 shows the speed/accuracy trade-off for the inference methods,
using wall clock time for test set inference as the speed metric. On this task, Viterbi is time-consuming
because of the larger label set size. The inference network has comparable accuracy to Viterbi but is much
faster. Gradient descent needs much more time to get close to the others but plateaus before actually
reaching similar accuracy. Instance-tailoring and warm starting reside between infnet+ and Viterbi, with
warm starting being significantly faster because it does not require updating inference network parameters.

10



Figure 2: The architectures of inference network FΦ and energy network EΘ.

6 SPEN Training Using Inference Networks
In Section 5, we discussed training inference networks for a pretrained, fixed energy function for sequence
labeling. We now describe our completed work in joint learning of energy functions and inference networks,
using the framework of SPENs.

Belanger and McCallum [2016] relaxed y from a discrete to a continuous vector and used gradient
descent for inference. We also relax y but we use a different strategy to approximate inference. We define
an inference network AΨ(x) parameterized by Ψ and train it with the goal as Equation 1. Figure 2 shows
the architectures of inference network FΦ and energy network EΘ. Given an energy function EΘ and a
dataset X of inputs, we solve the optimization problem as shown in Equation 5.

The following parts show how to train SPENs and inference networks.

6.1 Joint Training of SPENs and Inference Networks
Belanger and McCallum [2016] propose a structured hinge loss for training SPENs:

min
Θ

∑
〈xi,yi〉∈D

[
max

y∈YR(x)
(4(y,yi)− EΘ(xi,y) + EΘ(xi,yi))

]
+

(11)

where D is the set of training pairs, [f ]+ = max(0, f), and 4(y,y′) is a structured cost function that
returns a nonnegative value indicating the difference between y and y′. This loss is often referred to as
“margin-rescaled” structured hinge loss [Taskar et al., 2004, Tsochantaridis et al., 2005].

However, this loss is expensive to minimize for structured models because of the “cost-augmented”
inference step (maxy∈YR(x)). In prior work with SPENs, this step used gradient descent.

We replace this with a cost-augmented inference network FΦ(x). As suggested by the notation,
the cost-augmented inference network FΦ and the inference network AΨ will typically have the same
functional form, but use different parameters Φ and Ψ.

We write our new optimization problem as:

min
Θ

max
Φ

∑
〈xi,yi〉∈D

[4(FΦ(xi),yi)− EΘ(xi,FΦ(xi)) + EΘ(xi,yi)]+ (12)

We treat this optimization problem as a minmax game and find a saddle point for the game. Follow-
ing Goodfellow et al. [2014], we implement this using an iterative numerical approach. We alternatively
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optimize Φ and Θ, holding the other fixed. Optimizing Φ to completion in the inner loop of training is com-
putationally prohibitive and may lead to overfitting. So we alternate between one mini-batch for optimizing
Φ and one for optimizing Θ. We also add L2 regularization terms for Θ and Φ.

The objective for the cost-augmented inference network is:

Φ̂← argmax
Φ

[4(FΦ(xi),yi)− EΘ(xi,FΦ(x)i) + EΘ(xi,yi)]+ (13)

That is, we update Φ so that FΦ yields an output that has low energy and high cost, in order to mimic
cost-augmented inference. The energy parameters Θ are kept fixed. There is an analogy here to the gener-
ator in GANs: FΦ is trained to produce a high-cost structured output that is also appealing to the current
energy function.

The objective for the energy function is:

Θ̂← argmin
Θ

[4(AΦ(xi),yi)− EΘ(xi,FΦ(xi)) + EΘ(xi,yi)]+ + λ‖Θ‖22 (14)

That is, we update Θ so as to widen the gap between the cost-augmented and ground truth outputs. There
is an analogy here to the discriminator in GANs. The energy function is updated so as to enable it to
distinguish “fake” outputs produced by FΦ from real outputs yi. Training iterates between updating Φ and
Θ using the objectives above.

6.2 Test-Time Inference
After training, we want to use an inference network AΨ defined in Eq. (4). However, training only gives us
a cost-augmented inference network FΦ. Since AΨ and FΦ have the same functional form, we can use Φ to
initialize Ψ, then do additional training on AΨ as in Eq. (5) where X is the training or validation set. This
step helps the resulting inference network to produce outputs with lower energy, as it is no longer affected
by the cost function. Since this procedure does not use the output labels of the x’s in X , it could also be
applied to the test data in a transductive setting.

6.3 Variations and Special Cases
This approach also permits us to use large-margin structured prediction with slack rescaling [Tsochantaridis
et al., 2005]. Slack rescaling can yield higher accuracies than margin rescaling, but requires “cost-scaled”
inference during training which is intractable for many classes of output structures.

However, we can use our notion of inference networks to circumvent this tractability issue and approx-
imately optimize the slack-rescaled hinge loss, yielding the following optimization problem:

min
Θ

max
Φ

∑
〈xi,yi〉∈D

4(FΦ(xi),yi)[1− EΘ(xi,FΦ(xi)) + EΘ(xi,yi)]+ (15)

Using the same argument as above, we can also break this into alternating optimization of Φ and Θ.
We can optimize a structured perceptron [Collins, 2002] version by using the margin-rescaled hinge

loss (Eq. (21)) and fixing4(FΦ(xi),yi) = 0. When using this loss, the cost-augmented inference network
is actually a test-time inference network, because the cost is always zero, so using this loss may lessen the
need to retune the inference network after training.

When we fix 4(FΦ(xi),yi) = 1, then margin-rescaled hinge is equivalent to slack-rescaled hinge.
While using 4 = 1 is not useful in standard max-margin training with exact argmax inference (because
the cost has no impact on optimization when fixed to a positive constant), it is potentially useful in our
setting.

Consider our SPEN objectives with4 = 1:

[1− EΘ(xi,FΦ(xi)) + EΘ(xi,yi)]+ (16)

There will always be a nonzero difference between the two energies because FΦ(xi) will never exactly
equal the discrete vector yi.

Since there is no explicit minimization over all discrete vectors y, this case is more similar to a “con-
trastive” hinge loss which seeks to make the energy of the true output lower than the energy of a particular
“negative sample” by a margin of at least 1.
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Bibtex Bookmarks Delicious avg.
MLP 38.9 33.8 37.8 36.8
SPEN (BM16) 42.2 34.4 37.5 38.0
SPEN (E2E) 38.1 33.9 34.4 35.5
SPEN (InfNet) 42.2 37.6 37.5 39.1

Table 4: Test F1 when comparing methods on multi-label classification datasets.

Training Speed (examples/sec) Testing Speed (examples/sec)
Bibtex Bookmarks Delicious Bibtex Bookmarks Delicious

MLP 21670 19591 26158 90706 92307 113750
SPEN (E2E) 551 559 383 1420 1401 832
SPEN (InfNet) 5533 5467 4667 94194 88888 112148

Table 5: Training and test-time inference speed comparison (examples/sec).

6.4 Results
In this section, we compare our approach to previous work on traing SPENs

6.4.1 Multi-Label Classification

Energy Functions for Multi-label Classification We describe the SPEN for multi-label classification
(MLC) from Belanger and McCallum [2016]. Here, x is a fixed-length feature vector. We assume there are
L labels, each of which can be on or off for each input, so Y(x) = {0, 1}L for all x. The energy function
is the sum of two terms: EΘ(x,y) = Eloc(x,y) + Elab(y). Eloc(x,y) is the sum of linear models:

Eloc(x,y) =

L∑
i=1

yib
>
i F (x) (17)

where bi is a parameter vector for label i and F (x) is a multi-layer perceptron computing a feature repre-
sentation for the input x. Elab(y) scores y independent of x:

Elab(y) = c>2 g(C1y) (18)

where c2 is a parameter vector, g is an elementwise non-linearity function, andC1 is a parameter matrix.

Performance Comparison to Prior Work. Table 4 shows results comparing to prior work. The MLP and
“SPEN (BM16)” baseline results are taken from [Belanger and McCallum, 2016]. We obtained the “SPEN
(E2E)” [Belanger et al., 2017] results by running the code available from the authors on these datasets.
This method constructs a recurrent neural network that performs gradient-based minimization of the energy
with respect to y. They noted in their software release that, while this method is more stable, it is prone to
overfitting and actually performs worse than the original SPEN. We indeed find this to be the case, as SPEN
(E2E) underperforms SPEN (BM16) on all three datasets.

Our method (“SPEN (InfNet)”) achieves the best average performance across the three datasets. It
performs especially well on Bookmarks, which is the largest of the three. Our results use the contrastive
hinge loss and retune the inference network on the development data after the energy is trained; these
decisions were made based on the tuning, but all four hinge losses led to similarly strong results.

Speed Comparison. Table 5 compares training and test-time inference speed among the different meth-
ods. We only report speeds of methods that we ran.1 The SPEN (E2E) times were obtained using code
obtained from Belanger and McCallum. We suspect that SPEN (BM16) training would be comparable to
or slower than SPEN (E2E).

Our method can process examples during training about 10 times as fast as the end-to-end SPEN, and
60-130 times as fast during test-time inference. In fact, at test time, our method is roughly the same speed
as the MLP baseline, since our inference networks use the same architecture as the feature networks which

1The MLP F1 scores above were taken from Belanger and McCallum [2016], but the MLP timing results reported in Table 5 are
from our own experimental replication of their results.
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validation accuracy (%)
SPEN hinge loss -retuning +retuning
margin rescaling 89.1 89.3
slack rescaling 89.4 89.6
perceptron (MR,4 = 0) 89.2 89.4
contrastive (4 = 1) 88.8 89.0

Table 6: Comparison of SPEN hinge losses and showing the impact of retuning (Twitter POS validation
accuracies). Inference networks are trained with the cross entropy term.

form the MLP baseline. Compared to the MLP, the training of our method takes significantly more time
overall because of joint training of the energy function and inference network, but fortunately the test-time
inference is comparable.

6.4.2 Sequence Labeling

Energy Functions for Sequence Labeling For sequence labeling tasks, given an input sequence x =
〈x1, x2, ..., x|x|〉, we wish to output a discrete sequence. In Equation 6, the energy function only permits
discrete y. For the general case that permits relaxing y to be continuous, we treat each yt as a vector. It
will be one-hot for the ground truth y and will be a vector of label probabilities for relaxed y’s. Then the
general energy function in Equation 7.

Experimental Setup For Twitter part-of-speech (POS) tagging, we use the annotated data from Gimpel
et al. [2011] and Owoputi et al. [2013] which contains L = 25 POS tags. For training, we combine the
1000-tweet OCT27TRAIN set and the 327-tweet OCT27DEV set. For validation, we use the 500-tweet
OCT27TEST set and for testing we use the 547-tweet DAILY547 test set. We use 100-dimensional skip-
gram embeddings trained on 56 million English tweets with word2vec [Mikolov et al., 2013].2

We use a BLSTM to compute the “input feature vector” f(x, t) for each position t, using hidden vectors
of dimensionality d = 100. We also use BLSTMs for the inference networks. The output layer of the infer-
ence network is a softmax function, so at every position, the inference network produces a distribution over
labels at that position. We train inference networks using stochastic gradient descent (SGD) with momen-
tum and train the energy parameters using Adam. For 4, we use L1 distance. We tune hyperparameters
on the validation set; full details of tuning are provided in the appendix. We found that the cross entropy
stabilization term worked well for this setting.

We compare to standard BLSTM and CRF baselines. We train the BLSTM baseline to minimize per-
token log loss; this is often called a “BLSTM tagger”. We train a CRF baseline using the energy in Eq. (6)
with the standard conditional log-likelihood objective using the standard dynamic programming algorithms
(forward-backward) to compute gradients during training. Further details are provided in the appendix.

Learned Pairwise Potential Matrix Figure 3 shows the learned pairwise potential matrix W in Twitter
POS tagging. We can see strong correlations between labels in neighborhoods. For example, an adjective
(A) is more likely to be followed by a noun (N) than a verb (V) (see row labeled “A” in the figure).

Loss Function Comparison. Table 6 shows results when comparing SPEN training objectives. We see a
larger difference among losses here than for MLC tasks. When using the perceptron loss, there is no margin,
which leads to overfitting: 89.4 on validation, 88.6 on test (not shown in the table). The contrastive loss,
which strives to achieve a margin of 1, does better on test (89.0). We also see here that margin rescaling and
slack rescaling both outperform the contrastive hinge, unlike the MLC tasks. We suspect that in the case in
which each input/output has a different length, using a cost that captures length is more important.

Comparison to Standard Baselines. Table 7 compares our final tuned SPEN configuration to two stan-
dard baselines: a BLSTM tagger and a CRF. The SPEN achieves higher validation and test accuracies with
faster test-time inference. While our method is slower than the baselines during training, it is faster than the
CRF at test time, operating at essentially the same speed as the BLSTM baseline while being more accurate.

2The pretrained embeddings are the same as those used by Tu et al. [2017] and are available at http://ttic.uchicago.
edu/~lifu/

14

http://ttic.uchicago.edu/~lifu/
http://ttic.uchicago.edu/~lifu/


Figure 3: Learned pairwise potential matrix for Twitter POS tagging.

validation test training speed testing speed
accuracy (%) accuracy (%) (examples/sec) (examples/sec)

BLSTM 88.6 88.8 385 1250
CRF 89.1 89.2 250 500
SPEN (InfNet) 89.6 89.8 125 1250

Table 7: Twitter POS accuracies of BLSTM, CRF, and SPEN (InfNet), using our tuned SPEN configuration
(slack-rescaled hinge, inference network trained with cross entropy term). Though slowest to train, the
SPEN matches the test-time speed of the BLSTM while achieving the highest accuracies.

6.4.3 Tag Language Model

The above results only use the pairwise energy. In order to capture long-distance dependencies in an entire
sequence of labels, we define an additional energy term ETLM(y) based on the pretrained TLM. If the
argument y consisted of one-hot vectors, we could simply compute its likelihood. However, to support
relaxed y’s, we need to define a more general function:

ETLM(y) = −
|y|+1∑
t=1

log(y>t TLM(〈y0, ..., yt−1〉)) (19)

where y0 is the start-of-sequence symbol, y|y|+1 is the end-of-sequence symbol, and TLM(〈y0, ..., yt−1〉)
returns the softmax distribution over tags at position t (under the pretrained tag language model) given the
preceding tag vectors. When each yt is a one-hot vector, this energy reduces to the negative log-likelihood
of the tag sequence specified by y.

We define the new joint energy as the sum of the energy function in Eq. (7) and the TLM energy function
in Eq. (19). During learning, we keep the TLM parameters fixed to their pretrained values, but we tune the
weight of the TLM energy (over the set {0.1, 0.2, 0.5}) in the joint energy. We train SPENs with the new
joint energy using the margin-rescaled hinge, training the inference network with the cross entropy term.

Setup To compute the TLM energy term, we first automatically tag unlabeled tweets, then train an LSTM
language model on the automatic tag sequences. When doing so, we define the input tag embeddings
to be L-dimensional one-hot vectors specifying the tags in the training sequences. This is nonstandard
compared to standard language modeling. In standard language modeling, we train on observed sequences
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val. accuracy (%) test accuracy (%)
-TLM 89.8 89.6
+TLM 89.9 90.2

Table 8: Twitter POS validation/test accuracies when adding tag language model (TLM) energy term to a
SPEN trained with margin-rescaled hinge.

predicted tags
# tweet (target word in bold) -TLM +TLM
1 ... that’s a t-17 , technically . does that count as top-25 ? determiner pronoun
2 ... lol you know im down like 4 flats on a cadillac ... lol ... adjective preposition
3 ... them who he is : he wants her to like him for his pers ... preposition verb
4 I wonder when Nic Cage is going to film " Another Something

Something Las Vegas " .
noun verb

5 Cut my hair , gag and bore me noun verb
6 ... they had their fun , we hd ours ! ;) lmaooo proper noun verb
7 " Logic will get you from A to B . Imagination will take you

everywhere . " - Albert Einstein .
verb noun

8 lmao I’m not a sheep who listens to it cos everyone else does
...

verb preposition

9 Noo its not cuss you have swag andd you wont look dumb !
...

noun coord. conj.

Table 9: Examples of improvements in Twitter POS tagging when using tag language model (TLM). In all
of these examples, the predicted tag when using the TLM matches the gold standard.

and compute likelihoods of other fully-observed sequences. However, in our case, we train on tag sequences
but we want to use the same model on sequences of tag distributions produced by an inference network.
We train the TLM on sequences of one-hot vectors and then use it to compute likelihoods of sequences of
tag distributions.

To obtain training data for training the tag language model, we run the Twitter POS tagger from Owoputi
et al. [2013] on a dataset of 303K randomly-sampled English tweets. We train the tag language model on
300K tweets and use the remaining 3K for tuning hyperparameters and early stopping. We train an LSTM
language model on the tag sequences using stochastic gradient descent with momentum and early stopping
on the validation set. We used a dropout rate of 0.5 for the LSTM hidden layer. We tune the learning rate
({0.1, 0.2, 0.5, 1.0}), the number of LSTM layers ({1, 2}), and the hidden layer size ({50, 100, 200}).

Results Table 8 shows results.3 Adding the TLM energy leads to a gain of 0.6 on the test set. Other
settings showed more variance; when using slack-rescaled hinge, we found a small drop on test, while
when simply training inference networks for a fixed, pretrained joint energy with tuned mixture coefficient,
we found a gain of 0.3 on test when adding the TLM energy. We investigated the improvements and found
some to involve corrections that seemingly stem from handling non-local dependencies better.

Table 9 shows examples in which our SPEN that includes the TLM appears to be using broader context
when making tagging decisions. These are examples from the test set labeled by two models: the SPEN
without the TLM (which achieves 89.6% accuracy, as shown in Table 8) and the SPEN with the TLM
(which reaches 90.2% accuracy). In example 1, the token “that” is predicted to be a determiner based on
local context, but is correctly labeled a pronoun when using the TLM. This example is difficult because of
the noun/verb tag ambiguity of the next word (“count”) and its impact on the tag for “that”. Examples 2
and 3 show two corrections for the token “like”, which is a highly ambiguous word in Twitter POS tagging.
The broader context makes it much clearer which tag is intended.

The next two examples (4 and 5) are cases of noun/verb ambiguity that are resolvable with larger
context. The last four examples show improvements for nonstandard word forms. The shortened form of
“had” (example 6) is difficult to tag due to its collision with “HD” (high-definition), but the model with the
TLM is able to tag it correctly. In example 7, the ambiguous token “b” is frequently used as a short form of

3The baseline results differ slightly from earlier results because we found that we could achieve higher accuracies in SPEN training
by avoiding using pretrained feature network parameters for the inference network.
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“be” on Twitter, and since it comes after “to” in this context, the verb interpretation is encouraged. However,
the broader context makes it clear that it is not a verb and the TLM-enriched model tags it correctly. The
words in the last two examples are nonstandard word forms that were not observed in the training data,
which is likely the reason for their erroneous predictions. When using the TLM, we can better handle
these rare forms based on the broader context. These results suggest that our method of training inference
networks can be used to add rich features to structured prediction, though we leave a thorough exploration
of global energies to future work.

7 Joint Parameterizations for Inference Networks
In Section 6, we jointly train the cost-augmented inference network and energy network, then do fine-tuning
of the cost-augmented inference network to make it more like a test-time inference network. We propose a
different loss that separates the two inference networks and trains them jointly:

min
Θ

λ

n

n∑
i=1

[
max
y

(−EΘ(xi,y) + EΘ(xi,yi))

]
+

+
1

n

n∑
i=1

[
max
y

(4(y,yi)−EΘ(xi,y)+EΘ(xi,yi))

]
+

The above objective contains two different inference problems, which are also the two inference problems
that must be solved in structured max-margin learning, whether during training or during test-time infer-
ence. Eq. (1) shows the test-time inference problem. The other one is cost-augmented inference, defined as
follows:

argmin
y′∈Y(x)

(EΘ(x,y)−4(y′,y)) (20)

This inference problem involves finding an output with low energy but high cost relative to the gold
standard output. Thus, it is not well-aligned with the test-time inference problem. In Section 6, we used
the same inference network for solving both problems, which led them to have to perform fine-tuning at
test-time with a different objective. We avoid this issue by instead jointly training two inference networks,
one for cost-augmented inference and the other for test-time inference:

min
Θ

max
Φ,Ψ

∑
〈xi,yi〉∈D

[4(FΦ(x),yi)−EΘ(xi,FΦ(x)) + EΘ(xi,yi)]+︸ ︷︷ ︸
margin-rescaled loss

+λ [−EΘ(xi,AΨ(xi)) + EΘ(xi,yi)]+︸ ︷︷ ︸
perceptron loss

(21)

We treat this optimization problem as a minmax game and find a saddle point for the game similar to
Section 6 and Goodfellow et al. [2014]. We alternatively optimize Θ, Φ and Ψ.

We drop the zero truncation (max(0, .)) when updating the inference network parameters to improve
stability during training. This also lets us remove the terms that do not have inference networks.

When we remove the truncation at 0, the objective for the inference network parameters is:

Ψ̂, Φ̂← argmax
Ψ,Φ

4(FΦ(x),yi)−EΘ(xi,FΦ(x))− λEΘ(xi,AΨ(xi))

The objective for the energy function is:

Θ̂← argmin
Θ

[
4 (FΦ(x),yi)−EΘ(xi,FΦ(x)) + EΘ(xi,yi)

]
+

+ λ
[
− EΘ(xi,AΨ(xi)) + EΘ(xi,yi)

]
+

The new objective jointly trains the energy function EΘ, cost-augmented inference network FΦ, and
test-time inference network AΨ. This objective offers us several options for defining joint parameterizations
of the two inference networks.

We consider three options which are visualized in Figure 4 and described below:

• (a) Separated: FΦ and AΨ are two independent networks with their own architectures and parameters
as shown in Figure 4(a).

• (b) Shared: FΦ and AΨ share the feature network as shown in Figure 4(b). We consider this option
because both FΦ and AΨ are trained to produce output labels with low energy. However FΦ also
needs to produce output labels with high cost4 (i.e., far away from the ground truth).
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Figure 4: Parameterizations for cost-augmented inference network FΦ and test-time inference network AΨ.

• (c) Stacked: Here, the cost-augmented network is a function of the output of the test-time inference
network and the gold standard output y is included as an additional input to the cost-augmented
network. That is, FΦ = f(AΨ(x),y) where f is a parameterized function. This is depicted in
Figure 4(c). Note that we block the gradient at AΨ when updating Ψ.

For the third option, we will consider multiple choices for the function f . One choice is to use an affine
transform on the concatenation of the inference network and the ground truth label:

FΦ(x,y)i = softmax(W [AΨ(x)i;yi] + b)

where semicolon (;) denotes vertical concatenation, L is the label set size, yi ∈ RL (position i of y) is a
one-hot vector, AΨ(x)i and FΦ(x)i are position i of AΨ and FΦ, and W is a 2L by L parameter matrix.
Another choice of f is a BiLSTM:

FΦ(x,y)i = BiLSTM([AΨ(x);y])

We could have y as input to the other architectures, but we limit our search to these three options. One mo-
tivation for these parameterizations is to reduce the total number of parameters in the procedure. Generally,
the number of parameters is expected to decrease when moving from option (a) to (b), and when moving
from (b) to (c). We will compare the three options empirically in our experiments, in terms of both accuracy
and number of parameters.

Another motivation, specifically for the third option, is to distinguish the two inference networks in
terms of their learned functionality. With all three parameterizations, the cost-augmented network will be
trained to produce an output that differs from the ground truth, due to the presence of the 4(FΦ(x),yi)
term. However, in section 6 we found that the trained cost-augmented network was barely affected by
fine-tuning for the test-time inference objective. This suggests that the cost-augmented network was mostly
acting as a test-time inference network by the time of convergence. With the third parameterization above,
however, we explicitly provide the ground truth output y to the cost-augmented network, permitting it to
learn to change the predictions of the test-time network in appropriate ways to improve the energy function.
We will explore this effect quantitatively and qualitatively below in our experiments.

7.1 Results and Analysis
Effect of Removing Truncation. Table 10 shows results for the margin-rescaled and perceptron losses
when considering the removal of zero truncation and its interaction with the use of the local CE term.
Training fails for both tasks when using zero truncation without the CE term. Removing truncation makes
learning succeed and leads to effective models even without using CE. However, when using the local CE
term, truncation has little effect on performance. The importance of CE in Section 6 is likely due to the fact
that truncation was being used.

Effect of Local CE. The local cross entropy (CE) term is useful for both tasks, though it appears more
helpful for tagging. This may be because POS tagging is a more local task. Regardless, for both tasks, the
inclusion of the CE term speeds convergence and improves training stability. For example, on NER, using
the CE term reduces the number of epochs chosen by early stopping from ∼100 to ∼25. On Twitter POS
Tagging, using the CE term reduces the number of epochs chosen by early stopping from ∼150 to ∼60.
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zero POS NER NER+
trunc. CE acc (%) F1 (%) F1 (%)
yes no 13.9 3.91 3.91

margin- no no 87.9 85.1 88.6
rescaled yes yes 89.4* 85.2* 89.5*

no yes 89.4 85.2 89.5

perceptron
no no 88.2 84.0 88.1
no yes 88.6 84.7 89.0

Table 10: Test set results for Twitter POS tagging and NER of several SPEN configurations. Results with *
correspond to the setting of Section 6.

POS NER NER+
acc (%) |T | |I| speed F1 (%) |T | |I| speed F1 (%)

BiLSTM 88.8 166K 166K – 84.9 239K 239K – 89.3

SPENs with inference networks in Section 6:
margin-rescaled 89.4 333K 166K – 85.2 479K 239K – 89.5
perceptron 88.6 333K 166K – 84.4 479K 239K – 89.0

SPENs with inference networks, compound objective, CE, no zero truncation (this paper):
separated 89.7 500K 166K 66 85.0 719K 239K 32 89.8
shared 89.8 339K 166K 78 85.6 485K 239K 38 90.1
stacked 89.8 335K 166K 92 85.6 481K 239K 46 90.1

Table 11: Test set results for Twitter POS tagging and NER. |T | is the number of trained parameters; |I| is
the number of parameters needed during the inference procedure. Training speeds (examples/second) are
shown for joint parameterizations to compare them in terms of efficiency. Best setting (highest performance
with fewest parameters and fastest training) is in boldface.

Effect of Compound Objective and Joint Parameterizations. The compound objective is the sum of
the margin-rescaled and perceptron losses, and outperforms them both (see Table 11). Across all tasks,
the shared and stacked parameterizations are more accurate than the previous objectives. For the separated
parameterization, the performance drops slightly for NER, likely due to the larger number of parameters.
The shared and stacked options also have fewer parameters to train than the separated option, and the
stacked version processes examples at the fastest rate during training.

The left part of Table 12 shows how the performance of the test-time inference network AΨ and the cost-
augmented inference network FΦ vary when using the new compound objective. The differences between
FΦ and AΨ are larger than in the baseline configuration, showing that the two are learning complementary
functionality.

With the stacked parameterization, the cost-augmented network FΦ receives as an additional input the
gold standard label sequence, which leads to the largest differences as the cost-augmented network can
explicitly favor incorrect labels.4

The right part of Table 12 shows qualitative differences between the two inference networks. On the
POS development set, we count the differences between the predictions of AΨ and FΦ when AΨ makes
the correct prediction.5 The most frequent combinations show that FΦ tends to output tags that are highly
confusable with those output by AΨ. For example, it often outputs proper noun when the gold standard
is common noun or vice versa. It also captures the noun-verb ambiguity and ambiguities among adverbs,
adjectives, and prepositions.

4We also tried a BiLSTM in the final layer of the stacked parameterization but results were similar to the simpler affine architecture,
so we only report results here with the affine architecture.

5We used the stacked parameterization.
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POS NER
AΨ − FΦ AΨ − FΦ

margin-rescaled 0.2 0
separated 2.2 0.4

compound shared 1.9 0.5
stacked 2.6 1.7

test-time (AΨ) cost-augmented (FΦ)
common noun proper noun
proper noun common noun

common noun adjective
proper noun proper noun + possessive

adverb adjective
preposition adverb

adverb preposition
verb common noun

adjective verb

Table 12: Top: differences in accuracy/F1 between test-time inference networks AΨ and cost-augmented
networks FΦ (on development sets). The “margin-rescaled” row uses a SPEN with the local CE term and
without zero truncation, where AΨ is obtained by fine-tuning FΦ as done in Section 6. Bottom: most
frequent output differences between AΨ and FΦ on the development set.

8 Energy-Based Inference Networks for Non-Autoregressive Machine
Translation

In this section, inference network is applied for non-autoregressive machine translation model training.
Our approach, which we call ENGINE (ENerGy-based Inference NEtworks), achieves state-of-the-art non-
autoregressive results on the IWSLT 2014 DE-EN and WMT 2016 RO-EN datasets, approaching the per-
formance of autoregressive models.

8.1 Generalized Energy and Inference Network for NMT
Most neural machine translation (NMT) systems model the conditional distribution pΘ(y | x) of a target
sequence y = 〈y1, y2, ..., yT 〉 given a source sequence x = 〈x1, x2, ..., xTs

〉, where each yt comes from a
vocabulary V , yT is 〈eos〉, and y0 is 〈bos〉. It is common in NMT to define this conditional distribution using
an “autoregressive” factorization [Sutskever et al., 2014a, Bahdanau et al., 2015, Vaswani et al., 2017]:

log pΘ(y | x) =

|y|∑
t=1

log pΘ(yt | y0:t−1,x)

This model can be viewed as an energy-based model [LeCun et al., 2006] by defining the energy function
EΘ(x,y) = − log pΘ(y | x). Given trained parameters Θ, test time inference seeks to find the translation
for a given source sentence x with the lowest energy: ŷ = argminy EΘ(x,y).

Finding the translation that minimizes the energy involves combinatorial search. We train inference
networks to perform this search approximately. The idea of this approach is to replace the test time
combinatorial search typically employed in structured prediction with the output of a network trained to
produce approximately optimal predictions as shown in Section 5 and Section 6. More formally, we de-
fine an inference network AΨ which maps an input x to a translation y and is trained with the goal that
AΨ(x) ≈ argminy EΘ(x,y).

Specifically, we train the inference network parameters Ψ as follows (assuming Θ is pretrained and
fixed):

Ψ̂ = argmin
Ψ

∑
〈x,y〉∈D

EΘ(x,AΨ(x)) (22)

where D is a training set of sentence pairs. The network architecture of AΨ can be different from the
architectures used in the energy function. In this paper, we combine an autoregressive energy function
with a non-autoregressive inference network. By doing so, we seek to combine the effectiveness of the
autoregressive energy with the fast inference speed of a non-autoregressive network.
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Figure 5: The model for learning test-time inference networks for NAT-NMT when the energy function
EΘ(x,y) is a pretrained seq2seq model with attention.

In order to allow for gradient-based optimization of the inference network parameters Ψ, we now define
a more general family of energy functions for NMT. First, we change the representation of the translation y
in the energy, redefining y = 〈y0, . . . ,y|y|〉 as a sequence of distributions over words instead of a sequence
of words.

In particular, we consider the generalized energy

EΘ(x,y) =

|y|∑
t=1

et(x,y) (23)

where
et(x,y) = −y>t log pΘ(· | y0,y1, . . . ,yt−1,x). (24)

We use the · notation in pΘ(· | . . .) above to indicate that we may need the full distribution over words.
Note that by replacing the yt with one-hot distributions we recover the original energy.

In order to train an inference network to minimize this energy, we simply need a network architecture
that can produce a sequence of word distributions, which is satisfied by recent non-autoregressive NMT
models [Ghazvininejad et al., 2019]. However, because the distributions involved in the original energy are
one-hot, it may be advantageous for the inference network too to output distributions that are one-hot or
approximately so. We will accordingly view inference networks as producing a sequence of T logit vectors
zt ∈ R|V|, and we will consider two operators O1 and O2 that will be used to map these zt logits into
distributions for use in the energy. Figure 5 provides an overview of our approach, including this generalized
energy function, the inference network, and the two operators O1 and O2.

8.2 Choices for Operators
The choices we consider for O1 and O2, which we present generically for operator O and logit vector z, are
shown in Table 13, and described in more detail below. Some of these O operations are not differentiable,
and so the Jacobian matrix ∂O(z)

∂z must be approximated during learning; we show the approximations we
use in Table 13 as well.

We consider five choices for each O:

(a) SX: softmax. Here O(z) = softmax(z); no Jacobian approximation is necessary.
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O(z) ∂O(z)
∂z

SX q ∂q
∂z

STL onehot(argmax(z)) I

SG onehot(argmax(q̃)) ∂q̃
∂z̃

ST onehot(argmax(q)) ∂q
∂z

GX q̃ ∂q̃
∂z̃

Table 13: Let O(z)∈∆|V|−1 be the result of applying an O1 or O2 operation to logits z output by the
inference network. Also let z̃ = z + g, where g is Gumbel noise, q = softmax(z), and q̃ = softmax(z̃).
We show the Jacobian (approximation) ∂O(z)

∂z we use when computing ∂`loss
∂z = ∂`loss

∂O(z)
∂O(z)
∂z , for each O(z)

considered.

(b) STL: straight-through logits. Here O(z) = onehot(argmaxi z). ∂O(z)
∂z is approximated by the iden-

tity matrix I (see Bengio et al. [2013]).

(c) SG: straight-through Gumbel-Softmax. Here O(z) = onehot(argmaxi softmax(z + g)), where gi
is Gumbel noise.6 ∂O(z)

∂z is approximated with ∂ softmax(z+g)
∂z [Jang et al., 2016].

(d) ST: straight-through. This setting is identical to SG with g =0 (see Bengio et al. [2013]).

(e) GX: Gumbel-Softmax. Here O(z) = softmax(z + g), where again gi is Gumbel noise; no Jacobian
approximation is necessary.

O1 \O2 SX STL SG ST GX

SX 55 (20.2) 256 (0) 56 (19.6) 55 (20.1) 55 (19.6)
STL 97 (14.8) 164 (8.2) 94 (13.7) 95 (14.6) 190 (0)
SG 82 (15.2) 206 (0) 81 (14.7) 82 (15.0) 83 (13.5)
ST 81 (14.7) 170 (0) 81 (14.4) 80 (14.3) 83 (13.7)
GX 53 (19.8) 201 (0) 56 (18.3) 54 (19.6) 55 (19.4)

(a) seq2seq AR energy,
BiLSTM inference networks

SX STL SG ST GX

80 (31.7) 133 (27.8) 81 (31.5) 80 (31.7) 81 (31.6)
186 (25.3) 133 (27.8) 95 (20.0) 97 (30.1) 180 (26.0)
98 (30.1) 133 (27.8) 95 (30.1) 97 (30.0) 97 (29.8)
98 (30.2) 133 (27.8) 95 (30.0) 97 (30.1) 97 (30.0)
81 (31.5) 133 (27.8) 81 (31.2) 81 (31.5) 81 (31.4)

(b) transformer AR energy,
CMLM inference networks

Table 14: Comparison of operator choices in terms of energies (BLEU scores) on the IWSLT14 DE-EN
dev set with two energy/inference network combinations. Oracle lengths are used for decoding. O1 is
the operation for feeding inference network outputs into the decoder input slots in the energy. O2 is the
operation for computing the energy on the output. Each row corresponds to the same O1, and each column
corresponds to the same O2.

IWSLT14 DE-EN WMT16 RO-EN
Energy (↓) BLEU (↑) Energy (↓) BLEU (↑)

baseline 153.54 8.28 175.94 9.47
distill 112.36 14.58 205.71 5.76

ENGINE 51.98 19.55 64.03 21.69

Table 15: Test results of non-autoregressive models when training with the references (“baseline”), distilled
outputs (“distill”), and energy (“ENGINE”). Oracle lengths are used for decoding. Here, ENGINE uses
BiLSTM inference networks and pretrained seq2seq AR energies. ENGINE outperforms training on both
the references and a pseudocorpus.

6gi = − log(− log(ui)) and ui ∼ Uniform(0, 1).
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IWSLT14 DE-EN WMT16 RO-EN

# iterations # iterations

1 10 1 10

CMLM 28.11 33.39 28.20 33.31
ENGINE 31.99 33.17 33.16 34.04

Table 16: Test BLEU scores of non-autoregressive models using no refinement (# iterations = 1) and using
refinement (# iterations = 10). Note that the # iterations = 1 results are purely non-autoregressive. ENGINE
uses a CMLM as the inference network architecture and the transformer AR energy. The length beam size
is 5 for CMLM and 3 for ENGINE.

8.3 Experimental Setup
8.3.1 Datasets

We evaluate our methods on two datasets: IWSLT14 German (DE)→ English (EN) and WMT16 Roma-
nian (RO)→ English (EN). All data are tokenized and then segmented into subword units using byte-pair
encoding [Sennrich et al., 2016]. We use the data provided by Lee et al. [2018] for RO-EN.

8.3.2 Autoregressive Energies

We consider two architectures for the pretrained autoregressive (AR) energy function. The first is an au-
toregressive sequence-to-sequence (seq2seq) model with attention [Luong et al., 2015]. The encoder is a
two-layer BiLSTM with 512 units in each direction, the decoder is a two-layer LSTM with 768 units, and
the word embedding size is 512. The second is an autoregressive transformer model [Vaswani et al., 2017],
where both the encoder and decoder have 6 layers, 8 attention heads per layer, model dimension 512, and
hidden dimension 2048.

8.3.3 Inference Network Architectures

We choose two different architectures: a BiLSTM “tagger” (a 2-layer BiLSTM followed by a fully-connected
layer) and a conditional masked language model (CMLM; Ghazvininejad et al., 2019), a transformer with
6 layers per stack, 8 attention heads per layer, model dimension 512, and hidden dimension 2048. Both
architectures require the target sequence length in advance; methods for handling length are discussed in
Sec. 8.3.4. For baselines, we train these inference network architectures as non-autoregressive models using
the standard per-position cross-entropy loss. For faster inference network training, we initialize inference
networks with the baselines trained with cross-entropy loss in our experiments.

The baseline CMLMs use the partial masking strategy described by Ghazvininejad et al. [2019]. This
involves using some masked input tokens and some provided input tokens during training. At test time,
multiple iterations (“refinement iterations”) can be used for improved results [Ghazvininejad et al., 2019].
Each iteration uses partially-masked input from the preceding iteration. We consider the use of multiple
refinement iterations for both the CMLM baseline and the CMLM inference network.7

8.3.4 Predicting Target Sequence Lengths

Non-autoregressive models often need a target sequence length in advance [Lee et al., 2018]. We report
results both with oracle lengths and with a simple method of predicting it. We follow Ghazvininejad et al.
[2019] in predicting the length of the translation using a representation of the source sequence from the
encoder. The length loss is added to the cross-entropy loss for the target sequence. During decoding, we
select the top k = 3 length candidates with the highest probabilities, decode with the different lengths in
parallel, and return the translation with the highest average of log probabilities of its tokens.

8.4 Results
Effect of choices for O1 and O2. Table 14 compares various choices for the operations O1 and O2. For
subsequent experiments, we choose the setting that feeds the whole distribution into the energy function

7The CMLM inference network is trained with full masking (no partial masking like in the CMLM baseline). However, since
the CMLM inference network is initialized using the CMLM baseline, which is trained using partial masking, the CMLM inference
network is still compatible with refinement iterations at test time.
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IWSLT14 WMT16
DE-EN RO-EN

Autoregressive (Transformer)

Greedy Decoding 33.00 33.33
Beam Search 34.11 34.07

Non-autoregressive

Iterative Refinement [Lee et al., 2018] - 25.73†

NAT with Fertility [Gu et al., 2018] - 29.06†

CTC [Libovický and Helcl, 2018] - 24.71†

FlowSeq [Ma et al., 2019] 27.55† 30.44†

CMLM [Ghazvininejad et al., 2019] 28.25 28.20†

Bag-of-ngrams-based loss [Shao et al., 2020] - 29.29†

AXE CMLM [Ghazvininejad et al., 2020] - 31.54†

Imputer-based model [Saharia et al., 2020] - 31.7†

ENGINE (ours) 31.99 33.16

Table 17: BLEU scores on two datasets for several non-autoregressive methods. The inference network
architecture is the CMLM. For methods that permit multiple refinement iterations (CMLM, AXE CMLM,
ENGINE), one decoding iteration is used (meaning the methods are purely non-autoregressive). †Results
are from the corresponding papers.

(O1 = SX) and computes the loss with straight-through (O2 = ST). Using Gumbel noise in O2 has only
minimal effect, and rarely helps. Using ST instead also speeds up training by avoiding the noise sampling
step.

Training with distilled outputs vs. training with energy. We compared training non-autoregressive
models using the references, distilled outputs, and as inference networks on both datasets. Table 15 shows
the results when using BiLSTM inference networks and seq2seq AR energies. The inference networks
improve over training with the references by 11.27 BLEU on DE-EN and 12.22 BLEU on RO-EN. In
addition, inference networks consistently improve over non-autoregressive networks trained on the distilled
outputs.

Impact of refinement iterations. Ghazvininejad et al. [2019] show improvements with multiple refine-
ment iterations. Table 16 shows refinement results of CMLM and ENGINE. Both improve with multiple
iterations, though the improvement is much larger with CMLM. However, even with 10 iterations, ENGINE
is comparable to CMLM on DE-EN and outperforms it on RO-EN.

Comparison to other NAT models. Table 17 shows 1-iteration results on two datasets. To the best of our
knowledge, ENGINE achieves state-of-the-art NAT performance: 31.99 on IWSLT14 DE-EN and 33.16
on WMT16 RO-EN. In addition, ENGINE achieves comparable performance with the autoregressive NMT
model.
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