How To Capture Linguistic Characteristics Of Tokens?

1. Same syntactic category, different senses: He robbed 9 banks. vs. It washed up on the banks.

2. Different POS tag and sense:

I was unable to police the situation. vs. I was unable to contact the police. . . .

How to solve this? Each word type can have a different vector representation in different contexts!

Models and Loss Function

word type embedding

Figure 2. seq2seq token embedding model

Loss Function

- Weighted Reconstruction Error:
- Input word sequence x, encoder f, decoder g

$Loss(f, g, x, i) = \sum_{j=i-w}^{i+w} a_i g(f(x, i))_j - v_{x_j} ^2$								
Decoding the token embedding to reconstruct the word type embedding v_{x_j}	weight for reconstruct the word type embedding v_{x_j}	encoding the context with central word x_i	word type embedding for <i>word x_j</i>					

Contact

<Lifu Tu> <Toyota Technological Institute at Chicago> Email:lifu@ttic.edu

Learning to Embed Words in Context for Syntactic Tasks

Lifu Tu; Kevin Gimpel; Karen Livescu Toyota Technological Institute at Chicago

Qualitative Analysis

	masters swimmers annual swim <u>4</u> your heart !				
2	so many miles loking <u>for</u> her and handing 1 way lol . off to the rehearsal space <u>for</u> a weekend long on the inauguration <u>for</u> your enjoyment #canucks now have a <u>4</u> point lead on the	1 ((2 c 3 a 4 ((1 2 3 4	@ 01 a1 @
-	way lol . it's the <u>1</u> mile trail and then you off to the my first one was like <u>2</u> minutes long and my fav place- was there <u>2</u> years ago and	5 6 7 8	i'i i a al hi		

Table 1. Nearest neighbours for token embeddings, where we consider neighbors that may have Different word types from that in the query token

• t-SNE visualization of token embeddings for word type ``4". • Each point shows the left and right context words (w=1). • The tag ``P" is preposition and ``\$" is number.

jus listenin 2 mr hudson and drake crazyness mention deaddddd u go <u>2</u> mlk high up n bk only a cups tho tryin <u>2</u> feed the whole family re ya'll listening <u>to</u> the annointed one ? mention well could u come to mrs wilsons for m bored on mars i kum down <u>2</u> earth ... yupp !! am listening <u>to</u> amar prtihibi - black about neopets and listening <u>to yelle</u> (URL) igh ritee now -_____ - bout <u>too</u> troop to the crib

Figure 3. Baseline DNN Tagger

Figure 4. Token Embedding Tagger

al.(2013)

- OCT27TRAIN, OCT27DEV, OCT27TEST DAILY547
- 2. Dependency Parsing: from Kong et al. (2014) • 717 training tweets
- 201 tweets TEST-NEW

	val.	test
(1)Baseline	88.4	88.9
(1)+DNN TE	+1.6	+0.9
(2)Baseline+updating	89.4	89.4
(2)+DNN TE	+0.6	+0.5
(3)Basline+features	89.2	89.3
(3)+DNN TE*	-0.6	-1.0
(3)+DNN TE	+1.2	+1.0
(3)Baseline+features	89.2	89.3
(3)+seq2seq TE*	-0.6	-1.0
(3)+seq2seq TE	+1.3	+1.0
(4)Baseline + all features	92.1	92.2
(4)+updating	92.2	92.4
(4)+DNN TE + wthout updating	92.4	92.8
Owoputi et al. (2013)	91.6	92.8

Dependency Parsing

Head Prediction Accuracy

W or w'	Baseline	DNN TE	Seq2seq TE	(2) Kong et al.(2014)	80.6±0.25				
0 1 2 3	75.8 75.4 73.2 72.3	- 77.8 77.3 77.2	- 77.8 77.9 76.9	<pre>(2) + Baseline parser(w=0) (2)+ DNN TE(w=-1, w'=1) (2)+ seq2seq TE(w=-1, w'=1) (2)+ seq2seq TE(w=-1, w'=2)</pre>	80.5±0.30 81.5±0.25 81.0±0.17 80.9±0.33				
Attachment F1 (%) on validation set ing different models and window sizes. For TE columns, the input does not include by type embeddings at all, only token nbeddings.			set sizes. ot include ken	 Dependency parsing unlabeled attachment F1 (%) on test sets for baseline parser and results when augmented with token embedding features. 					
Refer	ences								

us a en

- annotation, features, and experiments. In Proc. of ACL
- 2014. A dependency parser for tweets. In Proc. of EMNLP

Datasets

1. Part-of-Speech Tagging: from Gimpel et al. (2011) and Owoputi et

Part-of-Speech Tagging

- ``Baseline(w)'' refers to the baseline tagger with context of w words
- ``TokenEmbedding(w+w')" refers to the token embedding tagger with tagger context of w words and token embedding context of w' words.

Adding an Additional Feature to Tweeboparser

1. Kevin Gimpel, Nathan Schneider, Brendan O'Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A. Smith. 2011. Part-of-speech tagging for Twitter:

2. Olutobi Owoputi, Brendan O'Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider, and Noah A. Smith. 2013. Improved part-of-speech tagging for online conversational text with word clusters. In Proc. of NAACL 3. Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta, Archna Bhatia, Chris Dyer, and Noah A. Smith.