Learning to Embed Words in Context for Syntactic Tasks

How To Capture Linguistic Characteristics Of Tokens?
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1. Same syntactic category, different senses:
He robbed 9 banks. vs. It washed up on the banks.

2. Different POS tag and sense:

| was unable to police the situation. vs. | was unable to contact the police.

How to solve this? Each word type can have a different vector representation

in different contexts!
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Qualitative Analysis

masters swimmers annual swim 4 your heart ! jus listenin 2 mr hudson and drake crazyness

so many miles loking for her and handing 1 way lol .
off to the rehearsal space for a weekend long
on the inauguration for your enjoyment

#canucks now have a 4 point lead on the

way lol . it's the 1 mile trail and then you off to the
my first one was like 2 minutes long and
my fav place- was there 2 years ago and

@mention deaddddd u go 2 mlk high up n bk
only a cups tho tryin 2 feed the whole family
are ya'll listening to the annointed one ?
@mention well could u come to mrs wilsons for
i'm bored on mars i kum down 2 earth ... yupp !!
i am listening to amar prtihibi - black

about neopets and listening to yelle ( URL)

high ritee now - - bout too troop to the crib

OO UL &~ WN -

Table 1. Nearest neighbours for token embeddings, where we consider neighbors that may have

Different word types from that in the query token
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1. Part-of-Speech Tagging: from Gimpel et al. (2011) and Owoputi et

OCT27TRAIN, OCT27DEV, OCT27TEST
DAILY547

2. Dependency Parsing: from Kong et al. (2014)

717 training tweets
201 tweets TEST-NEW
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Models and Loss Function
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Figure 1. DNN token embedding model
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Figure 2. seq2seq token embedding model

Loss Function

 Weighted Reconstruction Error:
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