An Empirical Study on Robustness to Spurious Correlations using Pre-trained Language Models

Lifu Tu^{1,4} Garima Lalwani² Spandana Gella² He He^{3,4}

¹Toyota Technological Institute at Chicago

²Amazon Al

³New York University

⁴Most work was done during working at Amazon

EMNLP 2020

Table of Contents

2 Why Pre-training Improve Robust Accuracy

3 Multi-task Learning

Lifu Tu (TTIC)

Motivation

Models achieve high accuracy on benchmarks, however, perform poorly on the challenging datasets $_{[\rm McCoy\ et\ al.,\ 2019]}$.

- Spurious correlations is learned.
- How to improve robustness to spurious correlations?

NLI

Representative example from MNLI [Williams et al., 2017] P: The doctor mentioned the manager who ran. H: The doctor mentioned the manager entailment

Representative example from HANS [McCoy et al., 2019]

- P: The actors who advised The manager saw the tourists.
- H: The manager saw the tourists

non-entailment!

```
ΡI
```

```
Representative example from QQP [lyer et al., 2017] :
S1: Bangkok vs Shanghai?
S2: Shanghai vs Bangkok?
paraphrase
```

Representative example from PAWS_{QQP} [Zhang et al., 2017] : S1: Are all dogs smart or can some be dumb? S2: Are all dogs dumb or can some be smart? non-paraphrase!

Word overlap-based heuristic that works for training examples **fails** on the test data

Table of Contents

2 Why Pre-training Improve Robust Accuracy

3 Multi-task Learning

4 Conclusion

Lifu Tu (TTIC)

∃ >

Pre-training Improve Robust Accuracy

Recently, people find pre-training improve robustness. [Hendrycks et al. (2019, 2020); Li et al. (2019)]

However, could we answer the following questions?

- What role does longer fine-tuning play?
 - Minority examples require longer fine-tuning.
- How do pre-trained models generalize to out-of-distribution data?
 - Minority patterns in the training set
- When do they generalize well given the inconsistent improvements?
 - Different minority patterns may require varying amounts of training data

What Role does Longer Fine-tuning Play?

We observe longer fine-tuning:

- in-distribution accuracy saturates quickly
- improves accuracy on challenging examples

Hypothesis: minority examples require longer fine-tuning.

Experimental Details

Tasks: NLI Setting: fine-tuning pre-trained models Metric: training loss and dev set accuracy

What Role does Longer Fine-tuning Play?

Training loss of minority examples decreases more slowly!

Lifu Tu (TTIC)

What Role does Longer Fine-tuning Play?

minority examples: epoch 10; all examples: epoch 5.

Lifu Tu (TTIC)

How do pre-trained models generalize to out-of-distribution data?

Do pre-trained model enable extrapolation to unseen patterns? no

Hypothesis: pre-trained models generalize better from minority patterns in the training set.

Representative minority example:

"fly from Chicago to New York" vs. "fly from New York to Chicago"

Experimental Details

Task: MNLI

Setting: remove minority (727) only vs. randomly in MNLI training set Metric: accuracy on the challenging dataset (HANS)

.

Removing high overlap examples have significantly worse accuracy

When do They Generalize Well Given the Inconsistent Improvements?

Previously we find fine-tuning makes the different improvement on two tasks: NLI and PI.

Why?

Hypothesis: PAWS have syntactically more complex sentences!

Experimental Details

Tasks: NLI and PI Setting: fine-tuning pre-trained models on the challenging datasets directly Metric: accuracy on the challenging dataset

Experimental Details

Fine-tuning pre-trained models on the challenging datasets directly.

PAWS contains longer and syntactically more complex sentences

Length: 20.7 (PAWS) VS. 9.2 (HANS) parse tree height: 11.4 (PAWS) VS. 7.5 (HANS)

Different minority patterns may require varying amounts of training data ____

Lifu Tu (TTIC)

Table of Contents

2 Why Pre-training Improve Robust Accuracy

3 Multi-task Learning

4 Conclusion

Lifu Tu (TTIC)

Multi-task Learning

Increasing the amount of minority examples helps to improve model robustness. How to improve robustness further?

Aggregating generic data from various sources through multi-task learning.

MTL improves robust accuracy and do not hurt in-distribution performance.

How to explain the improvement?

- Challenging data in Auxiliary datasets? No
- MTL reduces sample complexity ? Yes

Two Ablation Studies

- Ablation Study 1: removing auxiliary datasets
- Ablation Study 2: remove minority examples from both the auxiliary and the target datasets

Ablation Study1

Setting

Target dataset: QQP Auxiliary datasets: HANS (challenging dataset) + MNLI + SNLI remove auxiliary datasets one by one

Removed	PAWS _{QQP}	Δ
None	45.9	-
HANS	45.3	-0.6
MNLI	42.3	-3.6
SNLI	44.2	-1.7

The challenging datasets are not much more helpful than benchmark datasets

< □ > < □ > < □ > < □ > < □ > < □ >

Ablation Study2

Setting

Target dataset: QQP Auxiliary dataset: MNLI Remove minority examples from both the auxiliary and the target datasets

Removed	PAWS _{QQP}	Δ
None	45.9	-
random examples		
QQP	44.3	-1.6
MNLI	45.0	-0.9
minority examples		
QQP	38.2	-7.7
MNLI	44.3	-1.6

Improved generalization is from minority examples.

Table of Contents

2 Why Pre-training Improve Robust Accuracy

3 Multi-task Learning

Lifu Tu (TTIC)

∃ >

Conclusions

- Analysis of robustness using pre-trained language models
- Generalization is from a small amount of minority examples.
- More pre-training data, larger model size, and additional auxiliary data can improve robustness

Suggestion to Future Directions

Importance of data diversity

Traditional techniques could still helpful.

Thanks!

メロト メポト メヨト メヨト