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Motivation

Models achieve high accuracy on benchmarks, however, perform poorly on
the challenging datasets [McCoy et al., 2019] .

Spurious correlations is learned.

How to improve robustness to spurious correlations?

Lifu Tu (TTIC) Nov 2020 3 / 23



NLI

Representative example from MNLI [Williams et al., 2017]

P: The doctor mentioned the manager who ran.
H: The doctor mentioned the manager
entailment

Representative example from HANS [McCoy et al., 2019]

P: The actors who advised The manager saw the tourists.
H: The manager saw the tourists
non-entailment!
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PI

Representative example from QQP [Iyer et al., 2017] :
S1: Bangkok vs Shanghai?
S2: Shanghai vs Bangkok?
paraphrase

Representative example from PAWSQQP [Zhang et al., 2017] :
S1: Are all dogs smart or can some be dumb?
S2: Are all dogs dumb or can some be smart?
non-paraphrase!

Word overlap-based heuristic that works for training examples fails on the
test data
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Pre-training Improve Robust Accuracy

Recently, people find pre-training improve robustness. [ Hendrycks et al. (2019, 2020); Li

et al. (2019)]

However, could we answer the following questions?

What role does longer fine-tuning play?
Minority examples require longer fine-tuning.

How do pre-trained models generalize to out-of-distribution data?
Minority patterns in the training set

When do they generalize well given the inconsistent improvements?
Different minority patterns may require varying amounts of training data
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What Role does Longer Fine-tuning Play?

We observe longer fine-tuning:

in-distribution accuracy saturates quickly
improves accuracy on challenging examples

Hypothesis: minority examples require longer fine-tuning.

Experimental Details
Tasks: NLI
Setting: fine-tuning pre-trained models
Metric: training loss and dev set accuracy
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What Role does Longer Fine-tuning Play?
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Training loss of minority examples decreases more slowly!
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What Role does Longer Fine-tuning Play?

Epochs
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minority examples: epoch 10; all examples: epoch 5.
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How do pre-trained models generalize to out-of-distribution
data?

Do pre-trained model enable extrapolation to unseen patterns? no

Hypothesis: pre-trained models generalize better from minority patterns in
the training set.

Representative minority example:
“fly from Chicago to New York” vs. “fly from New York to Chicago”

Experimental Details
Task: MNLI
Setting: remove minority (727) only vs. randomly in MNLI training set
Metric: accuracy on the challenging dataset (HANS)
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Removing high overlap examples have significantly worse accuracy
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When do They Generalize Well Given the Inconsistent
Improvements?

Previously we find fine-tuning makes the different improvement on two
tasks: NLI and PI.

Why?

Hypothesis: PAWS have syntactically more complex sentences!

Experimental Details
Tasks: NLI and PI
Setting: fine-tuning pre-trained models on the challenging datasets directly
Metric: accuracy on the challenging dataset
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Experimental Details
Fine-tuning pre-trained models on the challenging datasets directly.
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PAWS contains longer and syntactically more complex sentences
Length: 20.7 (PAWS) VS. 9.2 (HANS)
parse tree height: 11.4 (PAWS) VS. 7.5 (HANS)

Different minority patterns may require varying amounts of training data
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Multi-task Learning
Increasing the amount of minority examples helps to improve model
robustness. How to improve robustness further?

Aggregating generic data from various sources through multi-task learning.
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MTL improves robust accuracy and do not hurt in-distribution performance.
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How MTL Helps Generalization from Minority Examples?

How to explain the improvement?
Challenging data in Auxiliary datasets? No
MTL reduces sample complexity ? Yes

Two Ablation Studies
Ablation Study 1: removing auxiliary datasets
Ablation Study 2: remove minority examples from both the auxiliary
and the target datasets
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Ablation Study1

Setting
Target dataset: QQP
Auxiliary datasets: HANS (challenging dataset) + MNLI + SNLI
remove auxiliary datasets one by one

Removed PAWSQQP ∆

None 45.9 -

HANS 45.3 -0.6
MNLI 42.3 -3.6
SNLI 44.2 -1.7

The challenging datasets are not much more helpful than benchmark
datasets
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Ablation Study2

Setting
Target dataset: QQP
Auxiliary dataset: MNLI
Remove minority examples from both the auxiliary and the target datasets

Removed PAWSQQP ∆

None 45.9 -

random examples
QQP 44.3 -1.6
MNLI 45.0 -0.9
minority examples
QQP 38.2 -7.7
MNLI 44.3 -1.6

Improved generalization is from minority examples.
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Conclusions

Analysis of robustness using pre-trained language models

Generalization is from a small amount of minority examples.

More pre-training data, larger model size, and additional auxiliary data
can improve robustness

Suggestion to Future Directions
Importance of data diversity

Traditional techniques could still helpful.
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Thanks!
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