LEARNING APPROXIMATE INFERENCE NETWORKS FOR STRUCTURED PREDICTION

ABSTRACT

- structured prediction is challenging due to exponentially-large output spaces
- How to speed up the inference time?
- Structured prediction energy networks (SPENs; Belanger & McCallum 2016): use neural networks to define structured energy functions
- Belanger & McCallum used gradient descent for inference with SPENs
- We replace this use of gradient descent with a neural network trained to approximate structured argmax inference.
- We develop large-margin training criteria for joint training of the structured energy function and inference network
 - 1. On multi-label classification, high accuracy and 10-60x speed-ups compared to Belanger et al. (2017)
 - 2. Sequence labeling: accuracies comparable to exact inference with faster inference speeds
 - 3. Improved accuracy by augmenting energy with "tag language model"
- We also show how inference networks can replace dynamic programming at test time for conditional random fields (see paper for details)

INFERENCE NETWORKS

We define an inference network $\mathbf{A}_{\Psi}(\boldsymbol{x})$ with the goal that

$$\mathbf{A}_{\Psi}(\boldsymbol{x}) \approx \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{Y}_{R}(\boldsymbol{x})} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})$$

SPENs TRAINING

SPENs are trained with the following SSVM loss:

$$\min_{\Theta} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\max_{\boldsymbol{y} \in \mathcal{Y}_R(\boldsymbol{x})} \left(\triangle(\boldsymbol{y}, \boldsymbol{y}_i) - E_{\Theta}(\boldsymbol{x}_i, \boldsymbol{y}) + E_{\Theta} \right) \right]$$

Here $[.]_{+} = \max(0, .), (\Delta(y, y_i))$ is the error function between a prediction and the ground truth

However, the "cost-augmented" inference step is expensive.

- In SPENs, this step uses gradient step. \mathcal{Y}_R :relaxed output space
- However, hard to do exact optimization in the inner loop with gradient descent

ENERGIES FOR SEQUENCE LABELING $E_{\Theta}(\boldsymbol{x}, \boldsymbol{y}) = -\left(\sum_{t}^{t} U_{y_{t}}^{\top} f(\boldsymbol{x}, t) + \sum_{t}^{t} W_{y_{t-1}, y_{t}}\right) \quad \text{CRF}$ $E_{\Theta}(\boldsymbol{x}, \boldsymbol{y}) = -\left(\sum_{t}^{t} \sum_{i=1}^{L} y_{t,i} \left(U_{i}^{\top} f(\boldsymbol{x}, t)\right) + \sum_{t}^{t} y_{t-1}^{\top} W y_{t}^{\top}\right) \quad \begin{array}{c} \text{continuous} \\ \text{label space} \\ \text{label space} \end{array} \right)$ TUN $E^{\mathrm{TLM}}(\boldsymbol{y}) = -\sum_{t=1}^{T} \log(y_t^{\mathrm{T}} \mathrm{TLM}(\langle y_0, ..., y_{t-1} \rangle)) \boldsymbol{\swarrow}$

Lifu Tu Kevin Gimpel **Toyota Technological Institute at Chicago**

$$E^{loc}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{L} y_i b_i^{\top} F(\boldsymbol{x}) \qquad E^{loc}$$

$$\min_{\Theta} \max_{\Phi} \sum_{\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle \in \mathcal{D}} \left[\triangle (\mathbf{A}_{\Phi}(\boldsymbol{x}_i), \boldsymbol{y}_i) - E_{\Theta} \right]$$

$$\hat{\Phi} \leftarrow \operatorname*{argmax}_{\Phi}[\triangle(\mathbf{A}_{\Phi}(\boldsymbol{x}_{i}), \boldsymbol{y}_{i}) - E_{\Theta}(\boldsymbol{x}_{i}, \mathbf{A}_{\Phi})]$$

$$\hat{\Theta} \leftarrow \operatorname*{argmin}_{\Theta} [\Delta(\mathbf{A}_{\Phi}(\boldsymbol{x}_{i}), \boldsymbol{y}_{i}) - E_{\Theta}(\boldsymbol{x}_{i}, \mathbf{A}_{\Phi})]$$

$$\begin{array}{ll} \text{TEST-TIME} \\ \text{INFERENCE} \end{array} & \hat{\Psi} \leftarrow \underset{\Psi}{\operatorname{argmin}} \sum_{\boldsymbol{x} \in X} E_{\Theta}(\boldsymbol{x}) \\ \\ \boldsymbol{x} \in X \end{array}$$

References

- Learning . MIT Press 2006
- Networks." Arxiv Preprint

test accuracy(%)
89.6
90.2

-TLM	+TLM
determiner	pronoun
adjective preposition	preposition verb
noun noun	verb verb
proper noun verb noun	verb preposition coord. coni.
	determineradjective prepositionnoun noun nounproper noun verb noun

1. Belanger, David and McCallum., Andrew Structured Prediction Energy Networks. ICML2016 2. LeCun, Yann and Chopra, Sumit and Hadsell, Raia and Ranzato . A Tutorial on Energy-Based

3. Belanger, D. Yang, B., McCallum, A. "End-to-End Learning for Structured Prediction Energy