LEARNING APPROXIMATE INFERENCE NETWORKS FOR STRUCTURED PREDICTION

Lifu Tu Kevin Gimpel
Toyota Technological Institute at Chicago
ABSTRACT

- structured prediction is challenging due to exponentially-large output spaces
- How to speed up the inference time?
- Structured prediction energy networks (SPENs; Belanger \& McCallum 2016): use neural networks to define structured energy functions
- Belanger \& McCallum used gradient descent for inference with SPENs
- We replace this use of gradient descent with a neural network trained to approximate structured argmax inference.
- We develop large-margin training criteria for joint training of the structured energy function and inference network

1. On multi-label classification, high accuracy and 10-60x speed-ups compared to Belanger et al. (2017)
2. Sequence labeling: accuracies comparable to exact inference with faster inference speeds
3. Improved accuracy by augmenting energy with "tag language model"

- We also show how inference networks can replace dynamic programming at test time for conditional random fields (see paper for details)

INFERENCE NETWORKS

We define an inference network $\mathbf{A}_{\Psi}(\boldsymbol{x})$ with the goal that

$$
\mathbf{A}_{\Psi}(\boldsymbol{x}) \approx \underset{\boldsymbol{u} \in \mathcal{Y}}{\operatorname{argmin}} E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})
$$

SPENs TRAINING

SPENs are trained with the following SSVM loss:

$$
\min _{\Theta} \sum_{\left\langle\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\rangle \in \mathcal{D}}\left[\max _{\boldsymbol{y} \in \mathcal{Y}_{R}(\boldsymbol{x})}\left(\triangle\left(\boldsymbol{y}, \boldsymbol{y}_{i}\right)-E_{\Theta}\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right)+E_{\Theta}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right)\right]_{+}
$$

Here $[\cdot]_{+}=\max (0,),. \Delta\left(\boldsymbol{y}, \boldsymbol{y}_{i}\right)$ is the error function between a prediction and the ground truth

However, the "cost-augmented" inference step is expensive.

- In SPENs, this step uses gradient step. \mathcal{Y}_{R} :relaxed output space
- However, hard to do exact optimization in the inner loop with gradient descent

ENERGIES FOR SEQUENCE LABELING

$$
\begin{aligned}
& E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})=-\left(\sum_{t} U_{y_{t}}^{\top} f(\boldsymbol{x}, t)+\sum_{t} W_{y_{t-1}, y_{t}}\right) \leftarrow \mathbf{C R F}
\end{aligned}
$$

$$
\begin{aligned}
& E^{\mathrm{TLM}}(\boldsymbol{y})=-\sum_{t=1}^{|\boldsymbol{y}|+1} \log \left(y_{t}^{\top} \operatorname{TLM}\left(\left\langle y_{0}, \ldots, y_{t-1}\right\rangle\right)\right)
\end{aligned}
$$

ENERGIES FOR MULTI-LABEL

 CLASSIFICATION$$
E^{l o c}(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{L} y_{i} b_{i}^{\top} F(\boldsymbol{x}) \quad E^{l a b}(\boldsymbol{y})=c_{2}^{\top} g\left(C_{1} \boldsymbol{y}\right)
$$

$$
E_{\Theta}(\boldsymbol{x}, \boldsymbol{y})=E^{l o c}(\boldsymbol{x}, \boldsymbol{y})+E^{l a b}(\boldsymbol{y})
$$

JOINT ADVERSARIAL TRAINING OF SPENS AND

 INFERENCE NETWORKSIn SSVM loss, replacing expensive "cost-augmented" inference step with $\mathbf{A}_{\Phi}(\boldsymbol{x})$, then the new training objective is to minimize:

$$
\min _{\Theta} \max _{\Phi} \sum_{\left\langle\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\rangle \in \mathcal{D}}\left[\triangle\left(\mathbf{A}_{\Phi}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)-E_{\Theta}\left(\boldsymbol{x}_{i}, \mathbf{A}_{\Phi}\left(\boldsymbol{x}_{i}\right)\right)+E_{\Theta}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right]_{+}
$$

er part-of-speech tagging

We optimize the objective with the following two steps: The objective for the cost-augmented inference network is: $\hat{\Phi} \leftarrow \underset{\Phi}{\operatorname{argmax}}\left[\triangle\left(\mathbf{A}_{\Phi}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)-E_{\Theta}\left(\boldsymbol{x}_{i}, \mathbf{A}_{\Phi}(\boldsymbol{x})_{i}\right)+E_{\Theta}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right]_{+}+$Reg.

The objective for the energy function is:
$\hat{\Theta} \leftarrow \underset{\Theta}{\operatorname{argmin}}\left[\triangle\left(\mathbf{A}_{\Phi}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)-E_{\Theta}\left(\boldsymbol{x}_{i}, \mathbf{A}_{\Phi}\left(\boldsymbol{x}_{i}\right)\right)+E_{\Theta}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right]_{+}+\lambda\|\Theta\|_{2}^{2}$
Training iterates between updating Φ and Θ
Regularization term
The final inference network with retuning (Ψ is initialized with Θ):
TEST-TIME
$\hat{\Psi} \leftarrow$
$\leftarrow \underset{\Psi}{\operatorname{argmin}} \sum$

\#	tweet (target word in bold)	-TLM	+TLM
1	... that's at-17 , technically . does that count as top-25 ?	determiner	pronoun
2	.. lol you know im down like 4 flats on a cadillac ... lol .. them who he is : he wants her to like him for his pers ...	adjective preposition	$\begin{gathered} \text { preposition } \\ \text { verb } \end{gathered}$
4 5	Cut my hair, gag and bore me I wonder when Nic Cage is going to film " Another Something Something Las Vegas "	$\begin{aligned} & \text { noun } \\ & \text { noun } \end{aligned}$	verb verb
6 7 8	.. they had their fun, we hd ours! ;) Imaooo lmao I am not a sheep who listens to it cos everyone else does Noo its not cuss you have swag andd you wont look dumb !	$\begin{gathered} \text { proper noun } \\ \text { verb } \\ \text { noun } \end{gathered}$	verb preposition coord. conj.

Examples of improvements when using tag language model

References

References

1. Belanger, David and McCallum., Andrew Structured Prediction Energy Networks. ICML2016
2. Belanger, David and McCallum., Andrew Structured Prediction Energy Networks. ICML2016

Learning. MIT Press 2006
3. Belanger, D. Yang, B., McCallum, A. "End-to-End Learning for Structured Prediction Energy

