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@ Applying deep representation learning is popular to structured tasks.

» DNN, LSTM, CNN, BERT, etc.

@ Structured component is usually quite simplistic

» Independent assumption

> Linear chain CRF (first-order model) [Lafferty et al, 2001]

@ Challenge with high-order model: time complexity of training and inference
grow exponentially

Why global energies are still necessary?

Lifu Tu (TTIC) Sep2020  2/20



[Finkel et al, 2005]

Figure: An example from CoNLL 2003 Named Entity Recognition

Enable label consistency
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[Holtzman et al., 2020]

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32:

"The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Auténoma de México (UNAM) and
the Universidad Nacional Auténoma de México
(UNAM/Universidad Nacional Auténoma de
México/Universidad Nacional Auténoma de
México/Universidad Nacional Auténoma de
México/Universidad Nacional Auténoma de ..."

Pure Samplin%:

They were cattle called Bolivian Cavalleros; they live in a
remote desert uninterrupted by town, and they speak huge,
beautiful, paradisiacal Bolivian linguistic thin% They say,
'Lunch, marge.' They don't tell what the lunch is," director
Professor Chuperas Omwell told Sky News. “They've only
been talking to scientists, like we're being interviewed by TV
reporters. We don't even stick around to be interviewed by
TV reporters. Maybe that's how they figured out that they're
cosplaying as the Bolivian Cavalleros."

Figure: Generated outputs from GPT-2 large language model.

Avoid repetition and incoherence
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Training and Inference for Structured Models

Given an input sequence x = (xy, X2, ...,x‘x|), we wish to output a sequence
Yy =1, ¥2, - Yy]) € V(x) . Y(x) is the structured output space.

y* =argmin Eo(x,y)
y
Where energy function Eg(x,y) is a scalar that measures the compatibility of

each configuration x and y [LeCun et al., 2006; Belanger and McCallum, 2016]
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Inference for Structured Models

y" = argmin Eg(x, y)
y

Gradient Descent for Inference

GD(x) = arg min Eo(x, y).
YEVR(x)

Inference Networks [Tu et al., 2018]

A test-time inference network Ay :— Vg is parameterized by W and trained with the goal
that
Ay (x) =~ argmin Eg(x, y).
yEYVR(x)

@ Achieving a better speed/accuracy/search error trade-off than gradient descent

@ Faster than exact inference at similar accuracy levels

v
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Training Objective
Learning the energy function and inference network jointly [Tu et al, 2018, 2020] :

A A A

0,0,V = min fgif Z [A(Fo(x), yi)—Eo(xi, Fo(x)) + Eo(xi, yi)] +
! margin-rescaled loss

+ A [—Eo(xi, Au(x;)) + Eo(xi, yi)] .

perceptron loss

cost-augmented inference: Fo ~ argmin, (Eo(x,y’) — Ay, y)),

test-time inference: Ay = argmin,, Eg(x,y’).
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Setting

©: energy function
®: cost-augmented inference network
V: test-time inference network

GAN Objective
Alternately optimize ©, ® and & (like adversarial training)

@ Optimization is a min-max game.
@ Inference network is analogous to the generator

@ Energy function is analogous to the discriminator

Lifu Tu (TTIC) Sep2020  8/20



We use the following energy:

T L
Eo(x,y) = —(ZZ%, (U f(x, 1)) +Ew(y)>

t=1 j=1

L : label set size

x: a length-T sequence

yej: the jth entry of the output label y; at position t
f(x,t) : “input feature vector” at position t
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We use the following energy:

T L
Ee(x,y)=—<ZZyt, (U f(x t))+Ew(y)>

t=1 j=1

L : label set size

x: a length-T sequence

yej: the jth entry of the output label y; at position t
f(x,t) : “input feature vector” at position t

Two special cases:

@ Local Classifier :
Ew(y)=0

@ Linear Chain Energies:

.
Y) =Y ¥y Wy
t=1

What are high-order energy terms?
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f(x): “input feature vector”
y : output label sequence.
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Skip-Chain Energies

T M
=Sy Wiy

t=1 i=1

High-Order Energies

T
EW(Y :ZFyt—M7"'ayt)
t=M

We consider several different parameterizations of F:
@ Vectorized Kronecker Product (VKP)
o CNN
e Tag Language model (TLM)
o Self-Attention (S-Att)

Fully-Connected Energies
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Results
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Experimental Details

Baseline (1): local classifiers (BiLSTM)
Baseline (2): linear chain energy models.
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Result
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Skip-chain and high-order energy models yields higher performance.
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Results on Noisy Datasets
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High-order information helps the model recover from the noise.
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Incorporating BERT
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Experimental Details

Tasks: NER
Baseline (1) BERT finetuned for NER using a local loss
Baseline (2) a CRF using BERT features (“BERT-CRF").
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Incorporating BERT
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Skip-Chain (our)
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Little difference between the locally-trained BERT and linear-chain energy
function within our framework.




Incorporating BERT
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Higher-order energy achieves much better than the locally-trained BERT model
with framework.
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Visualization of Learned Energies

The rows correspond to earlier labels,
the columns correspond to subsequent labels.
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Conclusions

Propose several high-order energy terms to capture complex dependencies

Substantial improvements using high-order energy terms while keeping
inference speed as the same as local classifiers

Improvements even with BERT-like models

High-order energy terms enrich the structured dependency on noisy settings.
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